RESUMO
Liver cancer (LC) is a global health concern, marked by its high prevalence and mortality rates and known for its resistance to chemotherapy. The treatment of LC patients is facing great challenges. Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a LC marker that has been discovered in recent years, and there are sporadic data suggesting that it has an impact on the level of chemoresistance, but the exact mechanism remains to be deciphered. Our investigation, grounded in bioinformatics strategies including the TCGA database, GEO database, K-M plot database, GSEA, Pearson correlation analysis, and detection of clinical samples, led to the identification of TPX2 and its upstream transcription factor E2F8 as differentially expressed elements in LC tissues. We also probed the role of the axis in glycolysis, angiogenesis, tumor progression, and chemoresistance in LC cells. This was achieved by a battery of molecular and cellular experiments, such as qRT-PCR, CCK-8, Transwell, flow cytometry, and angiogenesis assays. Both TPX2 and E2F8 were upregulated in LC tissues and cells with E2F8 being responsible for the upregulation of TPX2. Through bioinformatics analysis, we observed a significant enrichment of TPX2 in the glycolysis and angiogenesis pathways. Cell-based experiments corroborated these findings, demonstrating that TPX2 knockdown led to significant inhibition of glycolysis and angiogenesis, along with a suppression of the malignant progression of LC cells. This was mirrored by a reduction in the IC50 values for cisplatin and apatinib to 0.8257 µM and 10.79 µM, respectively. In contrast, E2F8 overexpression reversed these effects in LC cells, increasing the IC50 values to 3.375 and 16.06 µM, respectively. The E2F8-TPX2 axis promotes glycolysis and angiogenesis in LC cells, which in turn accelerates cancer progression and reduces chemosensitivity. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-024-00655-w.
RESUMO
Acute kidney injury (AKI) is a common postoperative complication, but there is still a lack of accurate biomarkers. Cardiac surgery-associated AKI is the most common cause of major-surgery-related AKI, and patients requiring renal replacement therapy have high mortality rates. Early diagnosis, intervention, and management are crucial for improving patient prognosis. However, diagnosing AKI based solely on changes in serum creatinine level and urine output is insufficient, as these changes often lag behind actual kidney damage, making early detection challenging. Biomarkers such as tissue inhibitor of metalloproteinases-2 (TIMP-2) and insulin-like growth factor-binding protein-7 (IGFBP-7) have been found to be significant predictors of moderate-to-severe AKI when combined with urine content analysis. This article reviews the mechanism of biomarkers TIMP-2 and IGFBP-7 in AKI and provides a comprehensive overview of the clinical effects of TIMP-2 and IGFBP-7 in cardiac surgery-associated AKI, including prediction, diagnosis, and progression.
Assuntos
Injúria Renal Aguda , Biomarcadores , Procedimentos Cirúrgicos Cardíacos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Complicações Pós-Operatórias , Inibidor Tecidual de Metaloproteinase-2 , Humanos , Inibidor Tecidual de Metaloproteinase-2/sangue , Inibidor Tecidual de Metaloproteinase-2/urina , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/sangue , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/sangue , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/urina , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Biomarcadores/sangue , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/diagnóstico , PrognósticoRESUMO
Acute rejection (AR) is an important factor that leads to poor prognosis after liver transplantation (LT). Macrophage M1-polarization is an important mechanism in AR development. MicroRNAs play vital roles in disease regulation; however, their effects on macrophages and AR remain unclear. In this study, rat models of AR were established following LT, and macrophages and peripheral blood mononuclear cells were isolated from rats and humans, respectively. We found miR-449a expression to be significantly reduced in macrophages and peripheral blood mononuclear cells. Overexpression of miR-449a not only inhibited the M1-polarization of macrophages in vitro but also improved the AR of transplant in vivo. The mechanism involved inhibiting the noncanonical nuclear factor-kappaB (NF-κB) pathway. We identified procollagen-lysine1,2-oxoglutarate5-dioxygenase 1 (PLOD1) as a target gene of miR-449a, which could reverse miR-449a's inhibition of macrophage M1-polarization, amelioration of AR, and inhibition of the NF-κB pathway. Overall, miR-449a inhibited the NF-κB pathway in macrophages through PLOD1 and also inhibited the M1-polarization of macrophages, thus attenuating AR after LT. In conclusion, miR-449a and PLOD1 may be new targets for the prevention and mitigation of AR.
Assuntos
Transplante de Fígado , MicroRNAs , Animais , Humanos , Ratos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , NF-kappa B/metabolismo , Pró-Colágeno/metabolismo , Pró-Colágeno/farmacologiaRESUMO
Background: MicroRNA (miRNA) is reported to be closely related to a variety of pathophysiological processes for carcinoma and considered a potential biomarker for the diagnosis of lung cancer with brain metastasis. However, developing an accurate and sensitive miRNA detection method has proven to be a challenge. The aim of the present study was to integrate the advantages of rolling circle amplification (RCA), clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nucleases 9 (Cas9), and catalytic hairpin assembly (CHA) technologies to develop an miRNA detection method. Methods: In the present study, we developed a novel approach for the sensitive and accurate detection of miRNA through integrating garland RCA and CRISPR/Cas9-assisted signal generation. In this method, target miRNA cyclized dumbbell padlock and triggered the RCA process to form long single-stranded DNA products with a repeated hairpin structure. Double-stranded DNA sequences (dsDNA) were formed with the addition of complementary sequences. With the assistance of the Cas9 enzyme for specific recognition and cleavage of formed dsDNA, RCA products were disassembled into hairpin probes. The generated hairpin probe could be unfolded by target miRNA to initiate the CHA process for signal generation. Results: Through integration of the RCA and CHA processes, the method demonstrated favorable detection performance. The correlation equation between the signal and concentration of target miRNA was determined to be Y=312.3 × lgC + 2108, with a high correlation coefficient of 0.9786. The approach also exhibited high selectivity to the mismatched miRNAs. Conclusions: Our method could be used in the screening, diagnosis, and prognosis of multiple diseases without complicated thermal cycling instrumentation.
RESUMO
The occurrence of acute rejection after liver transplantation seriously impairs the prognosis of patients. miRNA is involved in many physiological and pathological processes of the body, but the mechanism of miRNA action in liver transplantation is not completely clear. In this study, we discuss the role of miR-505-5p in acute rejection after liver transplantation and its putative regulating mechanism. We construct an allogeneic rat liver transplantation model, observe the morphological and pathological changes in liver tissue, detect the expression levels of Myd88, miR-505-5p, IL-10 and TNF-α, and confirm that Myd88 is one of the direct targets of miR-505. The effects of miR-505-5p on the Myd88/TRAF6/NF-κB and MAPK pathways are detected both in vitro and in vivo, and the standard markers of Kupffer cell M1/M2 polarization are also detected. The results of qRT-PCR experiments show that miR-505-5p has a downward trend in rats with acute rejection. Western blot analysis reveals that over-expression of miR-505-5p induces the reduction of NF-κB and MAPK pathways both in vitro and in vivo. The role of miR-505-5p in alleviating acute rejection after transplantation may be accomplished by inducing M2-type polarization of Kupffer cells. In conclusion, we find that miR-505-5p alleviates acute rejection of liver transplantation by inducing M2 polarization of macrophages via the Myd88/TRAF6 axis, which suggests a potential strategy based on miRNAs in the follow-up treatment of liver transplantation.
Assuntos
Transplante de Fígado , MicroRNAs , Animais , Interleucina-10/metabolismo , Células de Kupffer/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Ratos , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Objectives: Chronic myeloid leukemia (CML) is a malignant tumor of the blood system. Gö6976, as a type of indolocarbazole and shows strong antitumor effects, but there have been no reports on the effect of Gö6976 on CML. The objectives of this research were: (1) to explore the impact of Gö6976 on CML in vitro and in vivo; and (2) to explore the drug toxicity of Gö6976 to normal cells and animals.Methods:K562 cells and CML mice were used to explore the effect of Gö6976 on CML. Peripheral blood mononuclear cells (PBMCs), CD34+ cells, and healthy mice were used to explore the drug toxicity of Gö6976.Results: Cell experiments showed that Gö6976 could inhibit the proliferation of K562 cells and enhance the inhibitory effects of imatinib at 5 µM and 10 µM, but it had little effect on CD34+ cells or PBMCs at concentrations less than 5 µM. Animal experiments showed that 2.5 mg/kg Gö6976 could effectively inhibit the development of CML in mice, and it had almost no effects on healthy mice at 2.5 mg/kg and 10 mg/kg.Discussion: Because of the direct inhibitory effect of Gö6976 on CML and its pharmacological enhancement effect on imatinib, it is foreseeable that Gö6976 could become a new type of anti-CML medicine. And the further research is needed.Conclusion: Our findings verified that Gö6976 could effectively inhibit CML in vitro and in vivo, and it is almost nontoxic to hematopoietic cells, immune cells, and healthy mice.
Assuntos
Carbazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Animais , Carbazóis/agonistas , Agonismo de Drogas , Humanos , Mesilato de Imatinib/agonistas , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common and deadly malignant tumors, with a high rate of recurrence worldwide. This study aimed to investigate the mechanism underlying the progression of HCC and to identify recurrence-related biomarkers. METHODS: We first analyzed 132 HCC patients with paired tumor and adjacent normal tissue samples from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). The expression profiles and clinical information of 372 HCC patients from The Cancer Genome Atlas (TCGA) database were next analyzed to further validate the DEGs, construct competing endogenous RNA (ceRNA) networks and discover the prognostic genes associated with recurrence. Finally, several recurrence-related genes were evaluated in two external cohorts, consisting of fifty-two and forty-nine HCC patients, respectively. RESULTS: With the comprehensive strategies of data mining, two potential interactive ceRNA networks were constructed based on the competitive relationships of the ceRNA hypothesis. The 'upregulated' ceRNA network consists of 6 upregulated lncRNAs, 3 downregulated miRNAs and 5 upregulated mRNAs, and the 'downregulated' network includes 4 downregulated lncRNAs, 12 upregulated miRNAs and 67 downregulated mRNAs. Survival analysis of the genes in the ceRNA networks demonstrated that 20 mRNAs were significantly associated with recurrence-free survival (RFS). Based on the prognostic mRNAs, a four-gene signature (ADH4, DNASE1L3, HGFAC and MELK) was established with the least absolute shrinkage and selection operator (LASSO) algorithm to predict the RFS of HCC patients, the performance of which was evaluated by receiver operating characteristic curves. The signature was also validated in two external cohort and displayed effective discrimination and prediction for the RFS of HCC patients. CONCLUSIONS: In conclusion, the present study elucidated the underlying mechanisms of tumorigenesis and progression, provided two visualized ceRNA networks and successfully identified several potential biomarkers for HCC recurrence prediction and targeted therapies.
Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Redes Reguladoras de Genes , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , RNA Neoplásico/genética , Carcinoma Hepatocelular/mortalidade , Biologia Computacional/métodos , Mineração de Dados , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/mortalidade , Masculino , MicroRNAs , Anotação de Sequência Molecular , Nomogramas , Prognóstico , RNA Longo não Codificante , RNA Mensageiro , Reprodutibilidade dos TestesRESUMO
OBJECTIVE: To investigate the effect of GÖ6976 on the proliferation of chronic myeloid leukemia cells and its toxic effect on normal cells and mice, so as to provide experimental basis for the effectiveness and safety of its clinical application. METHODS: Different concentrations of GÖ6976 were applied to the K562 cells, human peripheral blood mononuclear cells (PBMNC) and normal BaF3 cells, MTT assay was used to detect the effect on cell proliferation. BALB/C mice were used to investigate the toxicity in vivo. The general situation, body weight and the number of white blood cells in peripheral blood were monitored during administration, the blood collected from eyeballs before and after administration was used for biochemical examination, at the same time, the liver, kidney and femurs were examined pathologically. RESULTS: GÖ6976 could significantly inhibit the proliferation of K562 cells, inhibition effect increased with increasing dose (r=0.9623). However, there was no significant change in the inhibitory effect on PBMNC and BaF3 cells. The pathological examination of organs in each group showed no abnormal manifestations such as inflammatory infiltration, while the change rate of leukocyte count in peripheral blood of high dose group fluctuated greatly (Pï¼0.05), which might be related to the inhibition of intracellular protein kinase C, and no abnormality was observed in blood biochemical indexes. In the low dose group, there was no significant difference in peripheral blood leukocyte count, blood biochemical index and histopathology during administration drug as compared with the control group. CONCLUSION: GÖ6976 possesses a significant inhibitory effect on the proliferation of K562 cells, and the inhibitory effect increases with increasing dose. Long-term application of 5.0 µmol/L and below concentrations of GÖ6976 shows no obvious inhibitory effect on PBMNC, BaF3 cells. Long-term application of 10 mg/kg and below concentrations of GÖ6976 shows no obvious toxic effect on BALB/c mice.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucócitos Mononucleares , Animais , Apoptose , Carbazóis , Proliferação de Células , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos BALB CRESUMO
AbstractããChronic myelogenous leukemia (CML) is a hematological malignancy that seriously threatens the lives of patients. It was found that there are abnormal classic Wnt pathway, that is, Wnt/ß-catenin signaling pathways in CML cells, moreover, Wnt/ß-catenin signaling pathway is involved in the growth and proliferation of CML cells, and closely relates with the self-renewal ability of CML leukemic stem cells. This review summarizes the recent studies on the relationship between Wnt/ß-catenin signaling pathway and CML, and the researches on the targeting inhibition of Wnt/ß-catenin signaling pathway in CML treatment, thus to provide new ideas for the treatment of CML.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Via de Sinalização Wnt , Proliferação de Células , Humanos , Células-Tronco Neoplásicas , beta CateninaRESUMO
AbstractããAt present, allogeneic hematopoietic stem cell transplantation is still the only way to cure chronic myelogenous leukemia. With the advances of HLA matching technology, application of tyrosine kinase inhibitors before and after transplantation, improvement of postoperative immune status and fusion gene monitoring, and the control of postoperative complications, especially graft-versus-host disease etc. allogeneic hematopoietic stem cell transplantation is displaying better efficacy in the treatment of chronic myelogenous leukemia, and the quality of life of patients has also been significantly improved. This article reviews the recent research advances on the allogeneic hematopoietic stem cell transplantation and related support technologies for treatment of chronic myeloid leukemia.