Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Physiol Biochem ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39327394

RESUMO

This Special Issue of the Journal of Physiology and Biochemistry contains 7 contributions that have been elaborated in the context of the mini-network "Consortium of Trans-Pyrenean Investigations on Obesity and Diabetes" (CTPIOD), which is on its 19th year of existence. This scientific community, mostly involving research groups from France and Spain, but also open to participants coming from other countries, is focused on investigating the molecular and physiological mechanisms implicated in the development of obesity, diabetes, non-alcoholic fatty liver disease, and other noncommunicable diseases, as well as new preventive and therapeutic strategies. This special issue covers novel nutritional, molecular, and physiological aspects related to these metabolic diseases. Some of these papers emerge from the lectures of the 19th Conference on Trans-Pyrenean Investigations in Obesity and Diabetes, organized by the University of Zaragoza and celebrated in the town of Jaca (Spain) on 17-18th October 2022, and have been prepared in collaboration between different groups of the network. Many lectures were focused on the preventive role of specific fatty acids, dietary phenolic compounds and other phytochemicals against metabolic disorders. Consequently, we encouraged submission of original research in this field for this special issue.

2.
Life Sci ; 327: 121826, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37270172

RESUMO

AIMS: Rheumatoid arthritis is an autoimmune disease which induces chronic inflammation and increases the risk for sarcopenia and metabolic abnormalities. Nutritional strategies using omega 3 polyunsaturated fatty acids could be proposed to alleviate inflammation and improve the maintenance of lean mass. Independently, pharmacological agents targeting key molecular regulators of the pathology such as TNF alpha could be proposed, but multiple therapies are frequently necessary increasing the risk for toxicity and adverse effects. The aim of the present study was to explore if the combination of an anti-TNF therapy (Etanercept) with dietary supplementation with omega 3 PUFA could prevent pain and metabolic effects of RA. MATERIALS AND METHODS: RA was induced using collagen-induced arthritis (CIA) in rats to explore of supplementation with docosahexaenoic acid, treatment with etanercept or their association could alleviate symptoms of RA (pain, dysmobility), sarcopenia and metabolic alterations. KEY FINDINGS: We observed that Etanercept had major benefits on pain and RA scoring index. However, DHA could reduce the impact on body composition and metabolic alterations. SIGNIFICANCE: This study revealed for the first time that nutritional supplementation with omega 3 fatty acid could reduce some symptoms of rheumatoid arthritis and be an effective preventive treatment in patients who do not need pharmacological therapy, but no sign of synergy with an anti-TNF agent was observed.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ácidos Graxos Ômega-3 , Sarcopenia , Ratos , Animais , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Inibidores do Fator de Necrose Tumoral , Artrite Reumatoide/tratamento farmacológico , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação , Dor/tratamento farmacológico
3.
Curr Opin Clin Nutr Metab Care ; 26(2): 189-194, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36892966

RESUMO

PURPOSE OF REVIEW: An increase in the plant-based characteristics of the diet is now recommended for human and planetary health. There is growing evidence that plant protein (PP) intake has beneficial effects on cardiometabolic risk. However, proteins are not consumed isolated and the protein package (lipid species, fiber, vitamins, phytochemicals, etc) may contribute, besides the protein effects per se, to explain the beneficial effects associated with PP-rich diets. RECENT FINDINGS: Recent studies have shown the potential of nutrimetabolomics to apprehend the complexity of both the human metabolism and the dietary habits, by providing signatures associated to the consumption of PP-rich diets. Those signatures comprised an important proportion of metabolites that were representative of the protein package, including specific amino acids (branched-chain amino acids and their derivates, glycine, lysine), but also lipid species (lysophosphatidylcholine, phosphatidylcholine, plasmalogens) and polyphenol metabolites (catechin sulfate, conjugated valerolactones and phenolic acids). SUMMARY: Further studies are needed to go deeper in the identification of all metabolites making part of the specific metabolomic signatures, associated to the large range of protein package constituents and their effects on the endogenous metabolism, rather than to the protein fraction itself. The objective is to determine the bioactive metabolites, as well as the modulated metabolic pathways and the mechanisms responsible for the observed effects on cardiometabolic health.


Assuntos
Aminoácidos , Doenças Cardiovasculares , Humanos , Proteínas de Plantas , Metabolômica , Doenças Cardiovasculares/prevenção & controle , Lipídeos
4.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682570

RESUMO

The Western diet, rich in lipids and in n-6 polyunsaturated fatty acids (PUFAs), favors gut dysbiosis observed in Crohn's disease (CD). The aim of this study was to assess the effects of rebalancing the n-6/n-3 PUFA ratio in CEABAC10 transgenic mice that mimic CD. Mice in individual cages with running wheels were randomized in three diet groups for 12 weeks: high-fat diet (HFD), HFD + linseed oil (HFD-LS-O) and HFD + extruded linseed (HFD-LS-E). Then, they were orally challenged once with the Adherent-Invasive Escherichia coli (AIEC) LF82 pathobiont. After 12 weeks of diet, total energy intake, body composition, and intestinal permeability were not different between groups. After the AIEC-induced intestinal inflammation, fecal lipocalin-2 concentration was lower at day 6 in n-3 PUFAs supplementation groups (HFD-LS-O and HFD-LS-E) compared to HFD. Analysis of the mucosa-associated microbiota showed that the abundance of Prevotella, Paraprevotella, Ruminococcus, and Clostridiales was higher in the HFD-LS-E group. Butyrate levels were higher in the HFD-LS-E group and correlated with the Firmicutes/Proteobacteria ratio. This study demonstrates that extruded linseed supplementation had a beneficial health effect in a physically active mouse model of CD susceptibility. Additional studies are required to better decipher the matrix influence in the linseed supplementation effect.


Assuntos
Doença de Crohn , Linho , Microbiota , Animais , Doença de Crohn/tratamento farmacológico , Doença de Crohn/microbiologia , Dieta Hiperlipídica , Suplementos Nutricionais , Modelos Animais de Doenças , Escherichia coli , Mucosa Intestinal/microbiologia , Óleo de Semente do Linho/farmacologia , Camundongos , Camundongos Transgênicos
5.
Nutrients ; 13(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34684532

RESUMO

High-intensity interval training (HIIT) and linseed oil (LO) supplementation are effective strategies to reduce obesity-induced oxidative stress. Our aim was to determine whether the HIIT + LO combination prevents obesity-induced oxidative stress in high fat diet (HFD)-fed rats. HFD-fed 8-week-old, male, Wistar rats were subdivided in four groups: HFD, LO (2% of sunflower oil replaced with 2% of LO in the HFD), HIIT (4 days/week for 12 weeks), and HIIT + LO. Wistar rats fed a low-fat diet (LFD) were used as controls. Epididymal and subcutaneous adipose tissue, gastrocnemius muscle, liver, and plasma samples were collected to measure oxidative stress markers (AOPP, oxLDL), antioxidant (SOD, CAT, and GPx activities) and pro-oxidant (NOx and XO) enzyme activities. Compared with the LFD, the HFD altered the pro/antioxidant status in different tissues (increase of AOPP, oxLDL, SOD and catalase activities in plasma, and SOD activity increase in liver and decrease in adipose tissues) but not in gastrocnemius. LO upregulated CAT activity and decreased NOx in liver. HIIT alleviated HFD negative effects in liver by reducing SOD and NOx activities. Moreover, the HIIT + LO combination potentiated SOD activity upregulation in subcutaneous tissue. HIIT and LO supplementation have independent beneficial effects on the pro/antioxidant balance. Their association promotes SOD activity in subcutaneous adipose tissue.


Assuntos
Suplementos Nutricionais , Comportamento Alimentar , Treinamento Intervalado de Alta Intensidade , Óleo de Semente do Linho/farmacologia , Obesidade/patologia , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Biomarcadores/sangue , Catalase/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Nitratos/metabolismo , Obesidade/sangue , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/metabolismo , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Nutrients ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348802

RESUMO

Insulin resistance decreases the ability of insulin to inhibit hepatic gluconeogenesis, a key step in the development of metabolic syndrome. Metabolic alterations, fat accumulation, and fibrosis in the liver are closely related and contribute to the progression of comorbidities, such as hypertension, type 2 diabetes, or cancer. Omega 3 (n-3) polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), were identified as potent positive regulators of insulin sensitivity in vitro and in animal models. In the current study, we explored the effects of a transgenerational supplementation with EPA in mice exposed to an obesogenic diet on the regulation of microRNAs (miRNAs) and gene expression in the liver using high-throughput techniques. We implemented a comprehensive molecular systems biology approach, combining statistical tools, such as MicroRNA Master Regulator Analysis pipeline and Boolean modeling to integrate these biochemical processes. We demonstrated that EPA mediated molecular adaptations, leading to the inhibition of miR-34a-5p, a negative regulator of Irs2 as a master regulatory event leading to the inhibition of gluconeogenesis by insulin during the fasting-feeding transition. Omics data integration provided greater biological insight and a better understanding of the relationships between biological variables. Such an approach may be useful for deriving innovative data-driven hypotheses and for the discovery of molecular-biochemical mechanistic links.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/sangue , Expressão Gênica/efeitos dos fármacos , Síndrome Metabólica/sangue , MicroRNAs/sangue , MicroRNAs/efeitos dos fármacos , Animais , Dieta Hiperlipídica/métodos , Suplementos Nutricionais , Modelos Animais de Doenças , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Nutrients ; 12(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050316

RESUMO

Dietary fat subtypes may play an important role in the regulation of muscle mass and function during ageing. The aim of the present study was to determine the impact of isocaloric macronutrient substitutions, including different fat subtypes, on sarcopenia risk in older men and women, while accounting for physical activity (PA) and metabolic risk. A total of 986 participants, aged 65-79 years, completed a 7-day food record and wore an accelerometer for a week. A continuous sex-specific sarcopenia risk score (SRS), including skeletal muscle mass assessed by dual-energy X-ray absorptiometry (DXA) and handgrip strength, was derived. The impact of the isocaloric replacement of saturated fatty acids (SFAs) by either mono- (MUFAs) or poly-unsaturated (PUFAs) fatty acids on SRS was determined using regression analysis based on the whole sample and stratified by adherence to a recommended protein intake (1.1 g/BW). Isocaloric reduction of SFAs for the benefit of PUFAs was associated with a lower SRS in the whole population, and in those with a protein intake below 1.1 g/BW, after accounting for age, smoking habits, metabolic disturbances, and adherence to PA guidelines. The present study highlighted the potential of promoting healthy diets with optimised fat subtype distribution in the prevention of sarcopenia in older adults.


Assuntos
Gorduras Insaturadas na Dieta/administração & dosagem , Ingestão de Alimentos/fisiologia , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos/efeitos adversos , Fenômenos Fisiológicos da Nutrição/fisiologia , Sarcopenia/prevenção & controle , Idoso , Estudos de Coortes , Proteínas Alimentares/administração & dosagem , Exercício Físico , Feminino , Força da Mão , Humanos , Masculino , Recomendações Nutricionais , Risco , Sarcopenia/diagnóstico , Sarcopenia/etiologia , Fatores Sexuais
8.
Antioxidants (Basel) ; 9(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365668

RESUMO

It has been proven that dietary eicosapentaenoic acid (C20:5 n-3 or EPA) protects the heart against the deleterious effects of sepsis in female rats. We do not know if this is the case for male rodents. In this case, the efficiency of other n-3 polyunsaturated fatty acids (PUFAs) remains to be determined in both female and male rats. This study aimed at (i) determining whether dietary EPA is cardioprotective in septic male rats; (ii) evaluating the influence of dietary α-linolenic (C18:3 n-3 or ALA) on cardiac function during this pathology; and (iii) finding out the physiological and molecular mechanisms responsible for the observed effects. Sixty male rats were divided into three dietary groups. The animals were fed a diet deficient in n-3 PUFAs (DEF group), a diet enriched with ALA (ALA group) or a diet fortified with EPA (EPA group) for 6 weeks. Thereafter, each group was subdivided into 2 subgroups, one being subjected to cecal ligation and puncture (CLP) and the other undergoing a fictive surgery. Cardiac function was determined in vivo and ex vivo. Several parameters related to the inflammation process and oxidative stress were determined. Finally, the fatty acid compositions of circulating lipids and cardiac phospholipids were evaluated. The results of the ex vivo situation indicated that sepsis triggered cardiac damage in the DEF group. Conversely, the ex vivo data indicated that dietary ALA and EPA were cardioprotective by resolving the inflammation process and decreasing the oxidative stress. However, the measurements of the cardiac function in the in vivo situation modulated these conclusions. Indeed, in the in vivo situation, sepsis deteriorated cardiac mechanical activity in the ALA group. This was suspected to be due to a restricted coronary flow which was related to a lack of cyclooxygenase substrates in membrane phospholipids. Finally, only EPA proved to be beneficial in sepsis. Its action necessitates both resolution of inflammation and increased coronary perfusion. In that sense, dietary ALA, which does not allow the accumulation of vasodilator precursors in membrane lipids, cannot be protective during the pathology.

9.
Joint Bone Spine ; 86(3): 309-314, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30098424

RESUMO

Sarcopenia is defined as a combination of low muscle mass with low muscle function. The term was first used to designate the loss of muscle mass and performance associated with aging. Now, recognized causes of sarcopenia also include chronic disease, a physically inactive lifestyle, loss of mobility, and malnutrition. Sarcopenia should be differentiated from cachexia, which is characterized not only by low muscle mass but also by weight loss and anorexia. Sarcopenia results from complex and interdependent pathophysiological mechanisms that include aging, physical inactivity, neuromuscular compromise, resistance to postprandial anabolism, insulin resistance, lipotoxicity, endocrine factors, oxidative stress, mitochondrial dysfunction, and inflammation. The prevalence of sarcopenia ranges from 3% to 24% depending on the diagnostic criteria used and increases with age. Among patients with rheumatoid arthritis 20% to 30% have sarcopenia, which correlates with disease severity. Sarcopenia exacts a heavy toll of functional impairment, metabolic disorders, morbidity, mortality, and healthcare costs. Thus, the consequences of sarcopenia include disability, quality of life impairments, falls, osteoporosis, dyslipidemia, an increased cardiovascular risk, metabolic syndrome, and immunosuppression. The adverse effects of sarcopenia are particularly great in patients with a high fat mass, a condition known as sarcopenic obesity. The diagnosis of sarcopenia rests on muscle mass measurements and on functional tests that evaluate either muscle strength or physical performance (walking, balance). No specific biomarkers have been identified to date. The management of sarcopenia requires a multimodal approach combining a sufficient intake of high-quality protein and fatty acids, physical exercise, and antiinflammatory medications. Selective androgen receptor modulators and anti-myostatin antibodies are being evaluated as potential stimulators of muscle anabolism.


Assuntos
Envelhecimento/metabolismo , Miostatina/metabolismo , Sarcopenia/fisiopatologia , Sarcopenia/terapia , Idoso , Idoso de 80 Anos ou mais , Anti-Inflamatórios/uso terapêutico , Produtos Biológicos/uso terapêutico , Composição Corporal/fisiologia , Terapia Combinada , Dieta Rica em Proteínas , Exercício Físico , Feminino , Humanos , Resistência à Insulina/fisiologia , Masculino , Síndrome Metabólica/epidemiologia , Miostatina/efeitos dos fármacos , Obesidade/epidemiologia , Prevalência , Prognóstico , Medição de Risco , Sarcopenia/epidemiologia , Sarcopenia/metabolismo
10.
Int J Mol Sci ; 19(9)2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223577

RESUMO

The cross-talk between skeletal muscle and adipose tissue is involved in the development of insulin resistance (IR) in skeletal muscle, leading to the decrease in the anabolic effect of insulin. We investigated if the long chain polyunsaturated n-3 fatty acids (LCn-3PUFA), eicosapentaenoic and docosapentaenoic acids (EPA and DPA, respectively) could (1) regulate the development of IR in 3T3-L1 adipocytes and C2C12 muscle cells and (2) inhibit IR in muscle cells exposed to conditioned media (CM) from insulin-resistant adipocytes. Chronic insulin (CI) treatment of adipocytes and palmitic acid (PAL) exposure of myotubes were used to induce IR in the presence, or not, of LCn-3PUFA. EPA (50 µM) and DPA (10 µM) improved PAL-induced IR in myotubes, but had only a partial effect in adipocytes. CM from adipocytes exposed to CI induced IR in C2C12 myotubes. Although DPA increased the mRNA levels of genes involved in fatty acid (FA) beta-oxidation and insulin signaling in adipocytes, it was not sufficient to reduce the secretion of inflammatory cytokines and prevent the induction of IR in myotubes exposed to adipocyte's CM. Treatment with DPA was able to increase the release of adiponectin by adipocytes into CM. In conclusion, DPA is able to protect myotubes from PAL-induced IR, but not from IR induced by CM from adipocytes.


Assuntos
Adipócitos/metabolismo , Comunicação Celular , Ácidos Graxos/metabolismo , Resistência à Insulina , Fibras Musculares Esqueléticas/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Comunicação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Ácidos Graxos/farmacologia , Expressão Gênica , Insulina/metabolismo , Lipídeos de Membrana/metabolismo , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fosfatidilcolinas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
J Physiol Biochem ; 74(4): 569-577, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29637446

RESUMO

High-sugar intake and senescence share common deleterious effects, in particular in liver, but combination of these two factors was little studied. Our aims were to examine the effect of a high-sucrose diet in liver of old rats and also the potential benefices of a polyphenol/micronutrient supplementation. Four groups of 22-month-old male rats fed during 5 months with a diet containing either 13 or 62% sucrose, supplemented or not with rutin, vitamin E, A, D, selenium, and zinc were compared. We measured liver macronutrient composition, glycation/oxidative stress, enzyme activities (lipogenesis, ß-oxidation, fructokinase), gene expression (enzymes and transcription factors), in vivo protein synthesis rates and plasma parameters. Sucrose induced an increase in plasma and liver lipid content, and a stimulation of liver protein synthesis rates. Gene expression was little changed by sucrose, with lower levels for LXR-α and LXR-ß. Polyphenol/micronutrient supplementation tended to limit liver triglyceride infiltration through variations in fatty acid synthase, acyl coA oxidase, and possibly ATP-citrate lyase activities. In conclusion, despite differences in enzymatic regulations, and blunted responses of gene expression, high-sucrose diet was still able to induce a marked increase in liver lipid content in old animals. However, it probably attenuated the positive impact of polyphenol/micronutrients.


Assuntos
Envelhecimento , Antioxidantes/uso terapêutico , Sacarose Alimentar/efeitos adversos , Suplementos Nutricionais , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Rutina/uso terapêutico , Animais , Antioxidantes/metabolismo , Dieta da Carga de Carboidratos/efeitos adversos , Regulação da Expressão Gênica no Desenvolvimento , Glicosilação , Metabolismo dos Lipídeos , Fígado/crescimento & desenvolvimento , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Masculino , Micronutrientes/administração & dosagem , Micronutrientes/metabolismo , Micronutrientes/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Distribuição Aleatória , Ratos Wistar
12.
Nutr Metab (Lond) ; 15: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568317

RESUMO

BACKGROUND: Better choices of dietary lipid sources and substitution of refined by fortified oils could reduce the intake of saturated fatty acids (FA) and increase the intake of omega 3 FA concomitantly to healthy bioactive compounds. METHODS: The development of obesity and metabolic disturbances was explored in rats fed during 11 weeks with a high fat diet (HFD) in which the amount of saturated and polyunsaturated FA was respectively reduced and increased, using rapeseed oil as lipid source. This oil was used in a refined form (R) or fortified (10 fold increase in concentration) with endogenous micronutrients (coenzyme Q10 + tocopherol only (RF) only and also with canolol (RFC)). The effect of substituting palm by rapeseed oil was analysed using a student t test, oil fortification was analysed using ANOVA statistical test. RESULTS: Despite a similar weight gain, diets R, RF and RFC improved glucose tolerance (+ 10%) of the rats compared to a standard HFD with palm and sunflower oils as lipid source. Plasma glucose was lowered in RF and RFC groups (- 15 and 23% respectively), although triacylglycerol level was only reduced in group RFC (- 33%) compared to R. The fortification with canolol promoted the activation of Akt and AMP-activated protein kinase (AMPK) in skeletal muscle and subcutaneous adipose tissue respectively. Canolol supplementation also led to reduce p38 MAPK activation in skeletal muscle. CONCLUSIONS: This study suggests that the presence of endogenous micronutrients in rapeseed oil promotes cellular adaptations to reverse glucose intolerance and improve the metabolism of insulin sensitive tissues.

13.
Nutr Metab (Lond) ; 15: 15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456586

RESUMO

BACKGROUND: Obesity progressively leads to cardiac failure. Omega-3 polyunsaturated fatty acids (PUFA) have been shown to have cardio-protective effects in numerous pathological situations. It is not known whether rapeseed oil, which contains α-linolenic acid (ALA), has a similar protective effect. Omega-3 PUFAs are sensitive to attack by reactive oxygen species (ROS), and lipid peroxidation products could damage cardiac cells. We thus tested whether dietary refined rapeseed oil (RSO) associated with or without different antioxidants (vitamin E, coenzyme Q10 and canolol) is cardio-protective in a situation of abdominal obesity. METHODS: Sixty male Wistar rats were subdivided into 5 groups. Each group was fed a specific diet for 11 weeks: a low-fat diet (3% of lipids, C diet) with compositionally-balanced PUFAs; a high-fat diet rich in palm oil (30% of lipids, PS diet); the PS diet in which 40% of lipids were replaced by RSO (R diet); the R diet supplemented with coenzyme Q10 (CoQ10) and vitamin E (RTC diet); and the RTC diet supplemented with canolol (RTCC diet). At the end of the diet period, the rats were sacrificed and the heart was collected and immediately frozen. Fatty acid composition of cardiac phospholipids was then determined. Several features of cardiac function (fibrosis, inflammation, oxidative stress, apoptosis, metabolism, mitochondrial biogenesis) were also estimated. RESULTS: Abdominal obesity reduced cardiac oxidative stress and apoptosis rate by increasing the proportion of arachidonic acid (AA) in membrane phospholipids. Dietary RSO had the same effect, though it normalized the proportion of AA. Adding vitamin E and CoQ10 in the RSO-rich high fat diet had a deleterious effect, increasing fibrosis by increasing angiotensin-2 receptor-1b (Ag2R-1b) mRNA expression. Overexpression of these receptors triggers coronary vasoconstriction, which probably induced ischemia. Canolol supplementation counteracted this deleterious effect by reducing coronary vasoconstriction. CONCLUSION: Canolol was found to counteract the fibrotic effects of vitamin E + CoQ10 on cardiac fibrosis in the context of a high-fat diet enriched with RSO. This effect occurred through a restoration of cardiac Ag2R-1b mRNA expression and decreased ischemia.

14.
Free Radic Biol Med ; 113: 267-279, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29024807

RESUMO

Whereas reactive oxygen species (ROS) can have opposite impacts on insulin signaling, they have mainly been associated with mitochondrial dysfunction in skeletal muscle. We analyzed the relationship between these three features in skeletal muscle of senescence accelerated mice (SAM) prone (P8), which are characterized by enhanced oxidative stress compared to SAM resistant (R1). Oxidative stress, ROS production, antioxidant system, mitochondrial content and functioning, as well as in vitro and in vivo insulin signaling were investigated in gastrocnemius and quadriceps muscles. In SAMP8 compared to SAMR1, muscle content in carbonylated proteins was two-fold (p < 0.01) and ROS production by xanthine oxidase 70% (p < 0.05) higher. Furthermore, insulin-induced Akt phosphorylation measured in vivo and ex vivo as well as muscle glucose uptake measured ex vivo were significantly higher (p < 0.05). Mitochondrial respiration evidenced uncoupling and higher respiration rates with substrates of complexes II and IV, in agreement with higher maximal activity of complexes II and IV (+ 18% and 62%, respectively, p < 0.05). By contrast, maximal activity of complex I was 22% lower (p < 0.05). All strain differences were corrected after 6 months of N-acetylcysteine (NAC) treatment, thus supporting the involvement of high ROS production in these differences. In conclusion in muscle of SAMP8 compared to SAMR1, high ROS production is associated to higher insulin sensitivity and glucose uptake but to lower mitochondrial complex I activity. These conflicting adaptations, with regards to the resulting imbalance between NADH production and use, were associated with intrinsic adjustments in the mitochondrial respiration chain (mitochondrial uncoupling, enhanced complexes II and IV activity). We propose that these bioenergetics adaptations may help at preserving muscle metabolic flexibility of SAMP8.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Músculo Esquelético/metabolismo , Progéria/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Transporte Biológico , Complexo I de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Resistência à Insulina , Camundongos , Camundongos Transgênicos , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo , Fosforilação , Progéria/tratamento farmacológico , Progéria/genética , Carbonilação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Xantina Oxidase/genética , Xantina Oxidase/metabolismo
15.
Sci Rep ; 7(1): 1742, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28496106

RESUMO

It has been reported that neuregulin1 (NRG1) improves glucose tolerance in healthy and diabetic rodents. In vitro studies also suggest that NRG1 regulates myocyte oxidative capacity. To confirm this observation in vivo, we evaluated the effect on mitochondrial function of an 8-week treatment with NRG1 in db/db diabetic mice and C57BL/6JRJ healthy controls. NRG1 treatment improved complex 2-mediated mitochondrial respiration in the gastrocnemius of both control and diabetic mice and increased mitochondrial complex 2 subunit content by 2-fold. This effect was not associated with an increase in mitochondrial biogenesis markers. Enhanced ERBB4 phosphorylation could mediate NRG1 effects on mitochondrial function through signalling pathways, independently of ERK1/2, AKT or AMPK.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Complexo Mediador/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Neuregulina-1/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Metabolismo Energético , Receptores ErbB/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Músculo Esquelético/efeitos dos fármacos , Biogênese de Organelas , Transdução de Sinais
16.
Biochim Biophys Acta ; 1861(12 Pt A): 2000-2010, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27725263

RESUMO

Because the protective effect of oleate against palmitate-induced insulin resistance may be lessened in skeletal muscle once cell metabolism is overloaded by fatty acids (FAs), we examined the impact of varying amounts of oleate on palmitate metabolic channeling and insulin signaling in C2C12 myotubes. Cells were exposed to 0.5mM of palmitate and to increasing doses of oleate (0.05, 0.25 and 0.5mM). Impacts of FA treatments on radio-labelled FA fluxes, on cellular content in diacylglycerols (DAG), triacylglycerols (TAG), ceramides, acylcarnitines, on PKCθ, MAPKs (ERK1/2, p38) and NF-ΚB activation, and on insulin-dependent Akt phosphorylation were examined. Low dose of oleate (0.05mM) was sufficient to improve palmitate complete oxidation to CO2 (+29%, P<0.05) and to alter the cellular acylcarnitine profile. Insulin-induced Akt phosphorylation was 48% higher in that condition vs. palmitate alone (p<0.01). Although DAG and ceramide contents were significantly decreased with 0.05mM of oleate vs. palmitate alone (-47 and -28%, respectively, p<0.01), 0.25mM of oleate was required to decrease p38 MAPK and PKCθ phosphorylation, thus further improving the insulin signaling (+32%, p<0.05). By contrast, increasing oleate concentration from 0.25 to 0.5mM, thus increasing total amount of FA from 0.75 to 1mM, deteriorated the insulin signaling pathway (-30%, p<0.01). This was observed despite low contents in DAG and ceramides, and enhanced palmitate incorporation into TAG (+27%, p<0.05). This was associated with increased incomplete FA ß-oxidation and impairment of acylcarnitine profile. In conclusion, these combined data place mitochondrial ß-oxidation at the center of the regulation of muscle insulin sensitivity, besides p38 MAPK and PKCθ.


Assuntos
Insulina/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Ácido Oleico/farmacologia , Palmitatos/metabolismo , Transdução de Sinais/fisiologia , Animais , Carnitina/análogos & derivados , Carnitina/metabolismo , Linhagem Celular , Ceramidas/metabolismo , Diglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , NF-kappa B/metabolismo , Oxirredução/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
J Cachexia Sarcopenia Muscle ; 7(5): 587-603, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27239420

RESUMO

BACKGROUND: Muscle wasting prevails in numerous diseases (e.g. diabetes, cardiovascular and kidney diseases, COPD,…) and increases healthcare costs. A major clinical issue is to devise new strategies preventing muscle wasting. We hypothesized that 8-week docosahexaenoic acid (DHA) supplementation prior to fasting may preserve muscle mass in vivo. METHODS: Six-week-old C57BL/6 mice were fed a DHA-enriched or a control diet for 8 weeks and then fasted for 48 h. RESULTS: Feeding mice a DHA-enriched diet prior to fasting elevated muscle glycogen contents, reduced muscle wasting, blocked the 55% decrease in Akt phosphorylation, and reduced by 30-40% the activation of AMPK, ubiquitination, or autophagy. The DHA-enriched diet fully abolished the fasting induced-messenger RNA (mRNA) over-expression of the endocannabinoid receptor-1. Finally, DHA prevented or modulated the fasting-dependent increase in muscle mRNA levels for Rab18, PLD1, and perilipins, which determine the formation and fate of lipid droplets, in parallel with muscle sparing. CONCLUSIONS: These data suggest that 8-week DHA supplementation increased energy stores that can be efficiently mobilized, and thus preserved muscle mass in response to fasting through the regulation of Akt- and AMPK-dependent signalling pathways for reducing proteolysis activation. Whether a nutritional strategy aiming at increasing energy status may shorten recovery periods in clinical settings remains to be tested.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Jejum/metabolismo , Atrofia Muscular/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Tamanho do Órgão , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
18.
Br J Pharmacol ; 172(20): 4996-5008, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26228176

RESUMO

BACKGROUND AND PURPOSE: NO is a crucial regulator of energy and lipid metabolism, whose homeostasis is compromised during obesity. Combination of citrulline and atorvastatin potentiated NO production in vitro. Here we have assessed the effects of this combination in mice with diet-induced obesity (DIO). EXPERIMENTAL APPROACH: C57BL/6J male mice were given a standard diet (control) or a high fat-high sucrose diet (DIO) for 8 weeks. DIO mice were then treated with DIO alone, DIO with citrulline, DIO with atorvastatin or DIO with citrulline and atorvastatin (DIOcit-stat) for 3 weeks. Thereafter, body composition, glucose tolerance, insulin sensitivity and liver fat metabolism were measured. KEY RESULTS: DIOcit-stat mice showed lower body weight, fat mass and epididymal fat depots compared with other DIO groups. Unlike other DIO groups, glucose tolerance and insulin sensitivity of DIOcit-stat, along with blood glucose and insulin concentrations in response to feeding, were restored to control values. Refeeding-induced changes in liver lipogenic activity were also reduced in DIOcit-stat mice compared with those of DIO animals. This was associated with decreased gene expression of the transcription factor SREBP-1, liver X receptor α, ChREBP and of target lipogenic enzymes in the liver of DIOcit-stat mice compared with those of other DIO groups. CONCLUSIONS AND IMPLICATIONS: The citrulline-atorvastatin combination prevented fat mass accumulation and maintained glucose homeostasis in DIO mice. Furthermore, it potentiated inhibition of hepatic de novo lipogenesis activity. This combination has potential for preservation of glucose homeostasis in patients receiving statin therapy.


Assuntos
Atorvastatina/farmacologia , Citrulina/farmacologia , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Atorvastatina/uso terapêutico , Linhagem Celular Tumoral , Citrulina/uso terapêutico , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta , Gorduras na Dieta , Sacarose Alimentar , Modelos Animais de Doenças , Quimioterapia Combinada , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
19.
J Nutr Biochem ; 26(9): 949-59, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26007287

RESUMO

Skeletal muscle plays a major role in the control of whole body glucose disposal in response to insulin stimulus. Excessive supply of fatty acids to this tissue triggers cellular and molecular disturbances leading to lipotoxicity, inflammation, mitochondrial dysfunctions, impaired insulin response and decreased glucose uptake. This study was conducted to analyze the preventive effect of docosahexaenoic acid (DHA), a long-chain polyunsaturated n-3 fatty acid, against insulin resistance, lipotoxicity and inflammation in skeletal muscle at doses compatible with nutritional supplementation. DHA (30 µM) prevented insulin resistance in C2C12 myotubes exposed to palmitate (500 µM) by decreasing protein kinase C (PKC)-θ activation and restoring cellular acylcarnitine profile, insulin-dependent AKT phosphorylation and glucose uptake. Furthermore, DHA protected C2C12 myotubes from palmitate- or lipopolysaccharide-induced increase in Ptgs2, interleukin 6 and tumor necrosis factor-α mRNA level, probably through the inhibition of p38 MAP kinase and c-Jun amino-terminal kinase. In LDLR -/- mice fed a high-cholesterol-high-sucrose diet, supplementation with DHA reaching up to 2% of daily energy intake enhanced the insulin-dependent AKT phosphorylation and reduced the PKC-θ activation in skeletal muscle. Therefore, DHA used at physiological doses participates in the regulation of muscle lipid and glucose metabolisms by preventing lipotoxicity and inflammation.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/uso terapêutico , Óleos de Peixe/uso terapêutico , Resistência à Insulina , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Miosite/prevenção & controle , Absorção Fisiológica , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta Ocidental/efeitos adversos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/metabolismo , Óleos de Peixe/administração & dosagem , Glucose/metabolismo , Membro Posterior , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/enzimologia , Músculo Esquelético/imunologia , Miosite/sangue , Miosite/imunologia , Miosite/metabolismo , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteína Quinase C-theta , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/agonistas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Atum
20.
J Physiol ; 593(12): 2665-77, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25820551

RESUMO

KEY POINTS: Some studies suggest that neuregulin 1 (NRG1) could be involved in the regulation of skeletal muscle energy metabolism in rodents. Here we assessed whether unbalanced diet is associated with alterations of the NRG1 signalling pathway and whether exercise and diet might restore NRG1 signalling in skeletal muscle of obese rats. We show that diet-induced obesity does not impair NRG1 signalling in rat skeletal muscle. We also report that endurance training and a well-balanced diet activate the NRG1 signalling in skeletal muscle of obese rats, possibly via a new mechanism mediated by the protease ADAM17. These results suggest that some beneficial effects of physical activity and diet in obese rats could be partly explained by stimulation of the NRG1 signalling pathway. ABSTRACT: Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was associated with increased protein expression and phosphorylation ratio of the metalloprotease ADAM17, which is involved in NRG1 shedding. Similarly, in vitro stretch-induced activation of ADAM17 in rat myoblasts induced NRG1 cleavage and ErbB4 activation. These results show that low intensity endurance training and well-balanced diet activate the NRG1-ErbB4 pathway, possibly via the metalloprotease ADAM17, in skeletal muscle of diet-induced obese rats.


Assuntos
Dieta , Receptores ErbB/metabolismo , Neuregulina-1/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Receptores ErbB/genética , Masculino , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Neuregulina-1/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA