Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444277

RESUMO

The relationship between salivary proteome and dietary habits was studied in previous works, where a relationship between salivary proteins like cystatins and polyphenol/tannin levels in diet was observed. However, it remains to be elucidated if this association results from an effect of polyphenol-rich food ingestion on saliva composition. The aim of this work was to test the effects of apple intake on the saliva proteome, both in the short and medium term (after 4 days of continuous intake). By incubating saliva samples with apple phenolic-rich extract, protein bands containing α-amylase, S-type cystatins, and proline-rich proteins (PRPs) appeared in the fraction that precipitated, showing the potential of these (poly)phenols to precipitate salivary proteins. Among these, it was salivary cystatins that presented changes in their levels both in the saliva samples collected immediately after apple intake and in the ones collected after 4 days of intake of an extra amount of apple. These results support the thought that intake is reflected in the salivary proteome. The effect of a polyphenol-rich food, like the apple, on salivary cystatin levels is in line with results observed in animal models and, due to the involvement of these proteins in oral food perception, it would be interesting to explore in future studies the effect of these changes on sensory perception and acceptance of polyphenol-rich food.

2.
Nanoscale ; 2(12): 2855-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20936241

RESUMO

As interest in using carbon nanotubes for developing biologically compatible systems continues to grow, biological inspiration is stimulating new directions for in vivo approaches. The ability to integrate nanotechnology-based systems in the body will provide greater successes if the implanted material is made to mimic elements of the biological milieu especially through tuning physical and chemical characteristics. Here, we demonstrate the highly successful capacity for in vivo implantation of a new carbon nanotube-based composite that is, itself, integrated with a hydroxyapatite-polymethyl methacrylate to create a nanocomposite. The success of this approach is grounded in finely tailoring the physical and chemical properties of this composite for the critical demands of biological integration. This is accomplished through controlling the surface modification scheme, which affects the interactions between carbon nanotubes and the hydroxyapatite-polymethyl methacrylate. Furthermore, we carefully examine cellular response with respect to adhesion and proliferation to examine in vitro compatibility capacity. Our results indicate that this new composite accelerates cell maturation through providing a mechanically competent bone matrix; this likely facilitates osteointegration in vivo. We believe that these results will have applications in a diversity of areas including carbon nanotube, regeneration, chemistry, and engineering research.


Assuntos
Materiais Biomiméticos/química , Nanotubos de Carbono/química , Animais , Materiais Biomiméticos/uso terapêutico , Osso e Ossos/patologia , Linhagem Celular Tumoral , Durapatita/química , Durapatita/uso terapêutico , Humanos , Polimetil Metacrilato/química , Polimetil Metacrilato/uso terapêutico , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA