Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 11(Pt 4): 556-569, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856178

RESUMO

Carbonic anhydrase (CA) was among the first proteins whose X-ray crystal structure was solved to atomic resolution. CA proteins have essentially the same fold and similar active centers that differ in only several amino acids. Primary sulfonamides are well defined, strong and specific binders of CA. However, minor variations in chemical structure can significantly alter their binding properties. Over 1000 sulfonamides have been designed, synthesized and evaluated to understand the correlations between the structure and thermodynamics of their binding to the human CA isozyme family. Compound binding was determined by several binding assays: fluorescence-based thermal shift assay, stopped-flow enzyme activity inhibition assay, isothermal titration calorimetry and competition assay for enzyme expressed on cancer cell surfaces. All assays have advantages and limitations but are necessary for deeper characterization of these protein-ligand interactions. Here, the concept and importance of intrinsic binding thermodynamics is emphasized and the role of structure-thermodynamics correlations for the novel inhibitors of CA IX is discussed - an isozyme that is overexpressed in solid hypoxic tumors, and thus these inhibitors may serve as anticancer drugs. The abundant structural and thermodynamic data are assembled into the Protein-Ligand Binding Database to understand general protein-ligand recognition principles that could be used in drug discovery.


Assuntos
Anidrases Carbônicas , Isoenzimas , Ligação Proteica , Sulfonamidas , Termodinâmica , Humanos , Cristalografia por Raios X , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/química , Isoenzimas/metabolismo , Isoenzimas/química , Ligantes , Sulfonamidas/química , Sulfonamidas/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/química , Modelos Moleculares
2.
Bioconjug Chem ; 35(6): 790-803, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38750635

RESUMO

Tumor imaging and delivery of therapeutic agents may be achieved by designing high-affinity and high-selectivity compounds recognizing a tumor cell-expressing biomarker, such as carbonic anhydrase IX (CA IX). The CAIX, overexpressed in many hypoxic solid tumors, helps adjust to the energy requirements of the hypoxic environment, reduces intracellular acidification, and participates in the metastatic invasion of adjacent tissues. Here, we designed a series of sulfonamide compounds bearing CAIX-recognizing, high-affinity, and high-selectivity groups conjugated via a PEG linker to near-infrared (NIR) fluorescent probes used in the clinic for optically guided cancer surgery. We determined compound affinities for CAIX and other 11 catalytically active CA isozymes by the thermal shift assay and showed that the affinity Kd value of CAIX was in the subnanomolar range, hundred to thousand-fold higher than those of other CA isozymes. Similar affinities were also observed for CAIX expressed on the cancer cell surface in live HeLa cell cultures, as determined by the competition assay. The NIR-fluorescent compounds showed excellent properties in visualizing CAIX-positive tumors but not CAIX-negative knockout tumors in a nude mice xenograft model. These compounds would therefore be helpful in optically guided cancer surgery and could potentially be developed for anticancer treatment by radiotherapy.


Assuntos
Antígenos de Neoplasias , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica , Corantes Fluorescentes , Humanos , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Animais , Corantes Fluorescentes/química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Camundongos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/análise , Células HeLa , Neoplasias/diagnóstico por imagem , Camundongos Nus , Sulfonamidas/química , Raios Infravermelhos , Anidrases Carbônicas/metabolismo , Imagem Óptica/métodos
3.
Sci Rep ; 12(1): 17644, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271018

RESUMO

Numerous human cancers, especially hypoxic solid tumors, express carbonic anhydrase IX (CAIX), a transmembrane protein with its catalytic domain located in the extracellular space. CAIX acidifies the tumor microenvironment, promotes metastases and invasiveness, and is therefore considered a promising anticancer target. We have designed a series of high affinity and high selectivity fluorescein-labeled compounds targeting CAIX to visualize and quantify CAIX expression in cancer cells. The competitive binding model enabled the determination of common CA inhibitors' dissociation constants for CAIX expressed in exponentially growing cancer cells. All tested sulfonamide compounds bound the proliferating cells with similar affinity as to recombinantly purified CAIX. The probes are applicable for the design of selective drug-like compounds for CAIX and the competition strategy could be applied to other drug targets.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Corantes Fluorescentes , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Antígenos de Neoplasias/metabolismo , Sulfonamidas/farmacologia , Fluoresceínas
4.
Chembiochem ; 23(21): e202200417, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36066474

RESUMO

The study of cysteine modifications has gained much attention in recent years. This includes detailed investigations in the field of redox biology with focus on numerous redox derivatives like nitrosothiols, sulfenic acids, sulfinic acids and sulfonic acids resulting from increasing oxidation, S-lipidation, and perthiols. For these studies selective and rapid blocking of free protein thiols is required to prevent disulfide rearrangement. In our attempt to find new inhibitors of human histone deacetylase 8 (HDAC8) we discovered 5-sulfonyl and 5-sulfinyl substituted 1,2,4-thiadiazoles (TDZ), which surprisingly show an outstanding reactivity against thiols in aqueous solution. Encouraged by these observations we investigated the mechanism of action in detail and show that these compounds react more specifically and faster than commonly used N-ethyl maleimide, making them superior alternatives for efficient blocking of free thiols in proteins. We show that 5-sulfonyl-TDZ can be readily applied in commonly used biotin switch assays. Using the example of human HDAC8, we demonstrate that cysteine modification by a 5-sulfonyl-TDZ is easily measurable using quantitative HPLC/ESI-QTOF-MS/MS, and allows for the simultaneous measurement of the modification kinetics of seven solvent-accessible cysteines in HDAC8.


Assuntos
Compostos de Sulfidrila , Tiadiazóis , Humanos , Cisteína/metabolismo , Tiadiazóis/farmacologia , Espectrometria de Massas em Tandem , Ácidos Sulfênicos , Oxirredução , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo
5.
ChemistryOpen ; 10(5): 567-580, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33945229

RESUMO

A key part of the optimization of small molecules in pharmaceutical inhibitor development is to vary the molecular design to enhance complementarity of chemical features of the compound with the positioning of amino acids in the active site of a target enzyme. Typically this involves iterations of synthesis, to modify the compound, and biophysical assay, to assess the outcomes. Selective targeting of the anti-cancer carbonic anhydrase isoform XII (CA XII), this process is challenging because the overall fold is very similar across the twelve CA isoforms. To enhance drug development for CA XII we used a reverse engineering approach where mutation of the key six amino acids in the active site of human CA XII into the CA II isoform was performed to provide a protein chimera (chCA XII) which is amenable to structure-based compound optimization. Through determination of structural detail and affinity measurement of the interaction with over 60 compounds we observed that the compounds that bound CA XII more strongly than CA II, switched their preference and bound more strongly to the engineered chimera, chCA XII, based on CA II, but containing the 6 key amino acids from CA XII, behaved as CA XII in its compound recognition profile. The structures of the compounds in the chimeric active site also resembled those determined for complexes with CA XII, hence validating this protein engineering approach in the development of new inhibitors.


Assuntos
Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Quimera/metabolismo , Sulfonamidas/química , Amidas/química , Sequência de Aminoácidos , Inibidores da Anidrase Carbônica/metabolismo , Domínio Catalítico , Cristalização , Desenho de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
6.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008553

RESUMO

Among the twelve catalytically active carbonic anhydrase isozymes present in the human body, the CAIX is highly overexpressed in various solid tumors. The enzyme acidifies the tumor microenvironment enabling invasion and metastatic processes. Therefore, many attempts have been made to design chemical compounds that would exhibit high affinity and selective binding to CAIX over the remaining eleven catalytically active CA isozymes to limit undesired side effects. It has been postulated that such drugs may have anticancer properties and could be used in tumor treatment. Here we have designed a series of compounds, methyl 5-sulfamoyl-benzoates, which bear a primary sulfonamide group, a well-known marker of CA inhibitors, and determined their affinities for all twelve CA isozymes. Variations of substituents on the benzenesulfonamide ring led to compound 4b, which exhibited an extremely high observed binding affinity to CAIX; the Kd was 0.12 nM. The intrinsic dissociation constant, where the binding-linked protonation reactions have been subtracted, reached 0.08 pM. The compound also exhibited more than 100-fold selectivity over the remaining CA isozymes. The X-ray crystallographic structure of compound 3b bound to CAIX showed the structural position, while several structures of compounds bound to other CA isozymes showed structural reasons for compound selectivity towards CAIX. Since this series of compounds possess physicochemical properties suitable for drugs, they may be developed for anticancer therapeutic purposes.


Assuntos
Benzoatos/farmacologia , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Sulfonamidas/farmacologia , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X/métodos , Humanos , Isoenzimas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ligação Proteica/fisiologia , Relação Estrutura-Atividade , Termodinâmica , Microambiente Tumoral/efeitos dos fármacos , Benzenossulfonamidas
7.
Eur J Med Chem ; 156: 61-78, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30006175

RESUMO

Rational design of compounds that would bind specific pockets of the target proteins is a difficult task in drug design. The 12 isoforms of catalytically active human carbonic anhydrases (CAs) have highly similar active sites that make it difficult to design inhibitors selective for one or several CA isoforms. A series of CA inhibitors based on 2-chloro/bromo-benzenesulfonamide that is largely fixed in the CA active site together with one or two tails yielded compounds that were synthesized and evaluated as inhibitors of CA isoforms. Introduction of a second tail had significant influence on the binding affinity and two-tailed compounds in most cases provided high affinity and selectivity for CA IX and CA XIV. The contacts between several compounds and CA amino acids were determined by X-ray crystallography. Together with the intrinsic enthalpy and entropy of binding they provided the structure-thermodynamics correlations for this series of compounds with the insight how to rationally build compounds with desired CA isoform as a target.


Assuntos
Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Desenho de Fármacos , Sulfonamidas/química , Sulfonamidas/farmacologia , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Sítios de Ligação , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/química , Anidrase Carbônica IX/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Halogenação , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Relação Estrutura-Atividade , Termodinâmica , Benzenossulfonamidas
8.
Bioorg Chem ; 77: 534-541, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29459130

RESUMO

Four series of para or meta - substituted thiazolylbenzenesulfonamides bearing Cl substituents were designed, synthesized, and evaluated as inhibitors of all 12 catalytically active recombinant human carbonic anhydrase (CA) isoforms. Observed affinities were determined by the fluorescent thermal shift assay and the intrinsic affinities were calculated based on the fractions of binding-ready deprotonated sulfonamide and CA bearing protonated hydroxide bound to the catalytic Zn(II) in the active site. Several compounds exhibited selectivity towards CA IX, an anticancer target. Intrinsic affinities reached 30 pM, while the observed affinities - 70 nM. The structure-intrinsic affinity relationship map of the compounds showed the energetic contributions of the thiazole ring and its substituents.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Biocatálise , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Domínio Catalítico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Termodinâmica , Tiazóis/química , Benzenossulfonamidas
9.
PLoS One ; 9(12): e114106, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25493428

RESUMO

The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA) isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthio)acetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation.


Assuntos
Inibidores da Anidrase Carbônica/metabolismo , Anidrases Carbônicas/metabolismo , Pirimidinas/química , Sulfonamidas/metabolismo , Anidrases Carbônicas/química , Cristalografia por Raios X , Hidróxidos/metabolismo , Estrutura Molecular , Sulfonamidas/química , Termodinâmica , Zinco/metabolismo , Benzenossulfonamidas
10.
J Med Chem ; 57(22): 9435-46, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25358084

RESUMO

Human carbonic anhydrase IX (CA IX) is highly expressed in tumor tissues, and its selective inhibition provides a potential target for the treatment of numerous cancers. Development of potent, highly selective inhibitors against this target remains an unmet need in anticancer therapeutics. A series of fluorinated benzenesulfonamides with substituents on the benzene ring was designed and synthesized. Several of these exhibited a highly potent and selective inhibition profile against CA IX. Three fluorine atoms significantly increased the affinity by withdrawing electrons and lowering the pKa of the benzenesulfonamide group. The bulky ortho substituents, such as cyclooctyl or even cyclododecyl groups, fit into the hydrophobic pocket in the active site of CA IX but not CA II, as shown by the compound's co-crystal structure with chimeric CA IX. The strongest inhibitor of recombinant human CA IX's catalytic domain in human cells achieved an affinity of 50 pM. However, the high affinity diminished the selectivity. The most selective compound for CA IX exhibited 10 nM affinity. The compound that showed the best balance between affinity and selectivity bound with 1 nM affinity. The inhibitors described in this work provide the basis for novel anticancer therapeutics targeting CA IX.


Assuntos
Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Desenho de Fármacos , Benzeno/química , Calorimetria , Dióxido de Carbono/química , Anidrase Carbônica IV/química , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Cinética , Neoplasias/tratamento farmacológico , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Sulfonamidas/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA