Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Nat Mater ; 22(5): 644-655, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36581770

RESUMO

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Assuntos
Actinas , Neoplasias , DNA , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Citosol/metabolismo , Transdução de Sinais
3.
Data Brief ; 29: 105223, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32090158

RESUMO

The distribution of chemical species and the mechanical modulation inside a single cell or tissue are of fundamental importance to characterize their physiological activity or their pathological conditions [1-4]. Here we analyse these properties by means of label free, non invasive, spectroscopic methods. In particular, we use a recently developed micro-spectrometer, which acquires simultaneously Raman and Brillouin spectra on the same point with subcellular resolution [5]. The techniques ability to analyse the chemical composition and the mechanical properties of single cells has been tested on NIH/3T3 murine fibroblast cells grown in adhesion on silicon substrates. Here we report the data acquired from fixed cells after their oncogenic transformation. Mechanical and chemical evolution is evident by direct inspection of raw data. Sharing our experimental records can be valuable for researchers interested in the analysis of single cells by Raman and Brillouin spectroscopy in order: i) to compare data acquired by different set-ups and ii) to correctly model the fitting functions.

4.
Light Sci Appl ; 7: 17139, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839528

RESUMO

Innovative label-free microspectroscopy, which can simultaneously collect Brillouin and Raman signals, is used to characterize the viscoelastic properties and chemical composition of living cells with sub-micrometric resolution. The unprecedented statistical accuracy of the data combined with the high-frequency resolution and the high contrast of the recently built experimental setup permits the study of single living cells immersed in their buffer solution by contactless measurements. The Brillouin signal is deconvoluted in the buffer and the cell components, thereby revealing the mechanical heterogeneity inside the cell. In particular, a 20% increase is observed in the elastic modulus passing from the plasmatic membrane to the nucleus as distinguished by comparison with the Raman spectroscopic marker. Brillouin line shape analysis is even more relevant for the comparison of cells under physiological and pathological conditions. Following oncogene expression, cells show an overall reduction in the elastic modulus (15%) and apparent viscosity (50%). In a proof-of-principle experiment, the ability of this spectroscopic technique to characterize subcellular compartments and distinguish cell status was successfully tested. The results strongly support the future application of this technique for fundamental issues in the biomedical field.

5.
PLoS One ; 12(11): e0188840, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29182668

RESUMO

Cells release extracellular vesicles (EVs) in their environment and cellular lipids play an important role in their formation, secretion and uptake. Besides, there is also evidence that EV transferred lipids impact on recipient's cell signaling. Cellular senescence is characterized by a state of permanent proliferation arrest and represents a barrier towards the development of neoplastic lesions. A peculiar feature of senescence is the release of many soluble factors, the so-called Senescence-Associated Secretory Phenotype, which play a key role in triggering paracrine senescence signals. Recently, evidences have suggested that this phenotype includes not only soluble factors, but also EVs. To identify lipid signatures associated with H-Ras-induced senescence in EVs, we expressed active H-Ras (H-RasV12) in human fibroblasts and investigated how it affects EV release and lipid composition. An enrichment of hydroxylated sphingomyelin, lyso- and ether-linked phospholipids and specific H-Ras-induced senescence signatures, e.g. sphingomyelin, lysophosphatidic acid and sulfatides, were found in EVs compared to cells. Furthermore, H-RasV12 expression in fibroblasts was associated with higher levels of tetraspanins involved in vesicle formation.


Assuntos
Senescência Celular/genética , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Metabolismo dos Lipídeos , Proteínas ras/metabolismo , Células Cultivadas , Glicerofosfolipídeos/metabolismo , Humanos , Análise de Componente Principal , Esfingolipídeos/metabolismo
6.
Biophys Chem ; 229: 115-122, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28476206

RESUMO

We report a comprehensive study of the biocompatibility and neurocompatibility of titanium dioxide films (TiO2) prepared by Pulsed Microplasma Cluster Source (PMCS). This technique uses supersonic pulsed beams seeded by clusters of the metal oxide synthesized in a plasma discharge. The final stoichiometry of the TiO2 thin films is tuned changing the gas mixture, achieving stoichiometric or oxygen overstoichiometric films. All the films showed consistent biocompatibility and a spontaneous absorption of poly-d-lysine (PDL) that favors the adhesion and growth of murine cortical neurons. Moreover, the bioelectrical activity of the neuronal culture grown on the TiO2 film can be modulated by changing the chemistry of the surface. This work paves the way to develop a bio-hybrid neuromorphic device, where viable nerve cells are grown directly over a titanium dioxide film showing a network of memristors.


Assuntos
Materiais Biocompatíveis/química , Titânio/química , Potenciais de Ação/efeitos dos fármacos , Adsorção , Animais , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células HeLa , Humanos , Células MCF-7 , Camundongos , Microscopia de Força Atômica , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Polilisina/química , Polilisina/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA