Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurol ; 267(12): 3702-3710, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32683607

RESUMO

We report the longest follow-up of clinical and biochemical features of two previously reported adult mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) patients treated with liver transplantation (LT), adding information on a third, recently transplanted, patient. All three patients overcame the early post-operative period and tolerated immunosuppressive therapy. Plasma nucleoside levels dramatically decreased, with evidence of clinical improvement of ambulation and neuropathy. Conversely, other features of MNGIE, as gastrointestinal dysmotility, low weight, ophthalmoparesis, and leukoencephalopathy were essentially unchanged. A similar picture characterized two patients treated with allogenic hematopoietic stem cell transplantation (AHSCT). In conclusion, LT promptly and stably normalizes nucleoside imbalance in MNGIE, stabilizing or improving some clinical parameters with marginal periprocedural mortality rate as compared to AHSCT. Nevertheless, restoring thymidine phosphorylase (TP) activity, achieved by both LT and AHSCT, does not allow a full clinical recovery, probably due to consolidated cellular damage and/or incomplete enzymatic tissue replacement.


Assuntos
Transplante de Fígado , Encefalomiopatias Mitocondriais , Oftalmoplegia , Adulto , Seguimentos , Humanos , Encefalomiopatias Mitocondriais/terapia , Timidina Fosforilase
2.
Ann Neurol ; 88(1): 18-32, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32219868

RESUMO

OBJECTIVE: Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. METHODS: We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. RESULTS: Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype-modifier variants. All the DOA-associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28-associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA-associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28-associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission-inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells. INTERPRETATION: This study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18-32.


Assuntos
Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , GTP Fosfo-Hidrolases/genética , Atrofia Óptica/genética , Doenças do Nervo Óptico/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Sequenciamento do Exoma , Adulto Jovem
3.
Mitochondrion ; 36: 130-137, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28716668

RESUMO

Incomplete penetrance characterizes the two most frequent inherited optic neuropathies, Leber's Hereditary Optic Neuropathy (LHON) and dominant optic atrophy (DOA), due to genetic errors in the mitochondrial DNA (mtDNA) and the nuclear DNA (nDNA), respectively. For LHON, compelling evidence has accumulated on the complex interplay of mtDNA haplogroups and environmental interacting factors, whereas the nDNA remains essentially non informative. However, a compensatory mechanism of activated mitochondrial biogenesis and increased mtDNA copy number, possibly driven by a permissive nDNA background, is documented in LHON; when successful it maintains unaffected the mutation carriers, but in some individuals it might be hampered by tobacco smoking or other environmental factors, resulting in disease onset. In females, mitochondrial biogenesis is promoted and maintained within the compensatory range by estrogens, partially explaining the gender bias in LHON. Concerning DOA, none of the above mechanisms has been fully explored, thus mtDNA haplogroups, environmental factors such as tobacco and alcohol, and further nDNA variants may all participate as protective factors or, on the contrary, favor disease expression and severity. Next generation sequencing, complemented by transcriptomics and proteomics, may provide some answers in the next future, even if the multifactorial model that seems to apply to incomplete penetrance in mitochondrial optic neuropathies remains problematic, and careful stratification of patients will play a key role for data interpretation. The deep understanding of which factors impinge on incomplete penetrance may shed light on the pathogenic mechanisms leading to optic nerve atrophy, on their possible compensation and, thus, on development of therapeutic strategies.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Atrofia Óptica Autossômica Dominante/patologia , Atrofia Óptica Hereditária de Leber/patologia , Penetrância , Exposição Ambiental , Humanos , Doenças do Nervo Óptico
4.
Ann Neurol ; 80(3): 448-55, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27421916

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a fatal, recessive disease caused by mutations in the gene encoding thymidine phosphorylase, leading to reduced enzymatic activity, toxic nucleoside accumulation, and secondary mitochondrial DNA damage. Thymidine phosphorylase replacement has been achieved by allogeneic hematopoietic stem cell transplantation, a procedure hampered by high mortality. Based on high thymidine phosphorylase expression in the liver, a 25-year-old severely affected patient underwent liver transplantation. Serum levels of toxic nucleosides rapidly normalized. At 400 days of follow-up, the patient's clinical conditions are stable. We propose liver transplantation as a new therapy for MNGIE. Ann Neurol 2016;80:448-455.


Assuntos
Pseudo-Obstrução Intestinal/cirurgia , Transplante de Fígado/métodos , Encefalomiopatias Mitocondriais/cirurgia , Adulto , Humanos , Masculino , Distrofia Muscular Oculofaríngea , Oftalmoplegia/congênito
5.
Neurol Sci ; 37(7): 1149-51, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27007276

RESUMO

Mitochondrial neuro-gastro-intestinal encephalomyopathy (MNGIE) is a rare and unavoidably fatal disease due to mutations in thymidine phosphorylase (TP). Clinically it is characterized by gastrointestinal dysfunction, malnutrition/cachexia and neurological manifestations. MNGIE diagnosis remains a challenge mainly because of the complexity and rarity of the disease. Thus, our purposes were to promote a better knowledge of the disease in Emilia-Romagna region (ERR) by creating an accurate and dedicated network; to establish the minimal prevalence of MNGIE in Italy starting from ERR. Blood TP activity level was used as screening test to direct candidates to complete diagnostic work-up. During the study period of 1 year, only 10/71 units of ERR recruited 14 candidates. Their screening did not show TP activity changes. An Italian patient not resident in ERR was actually proved to have MNGIE. At the end of study in Italy there were nine cases of MNGIE; thus, the Italian prevalence of the disease is ~0.15/1,000,000 as a gross estimation. Our study confirms that MNGIE diagnosis is a difficult process which reflects the rarity of the disease and, as a result, a low level of awareness among specialists and physicians. Having available novel therapeutic options (e.g., allogenic hematopoietic stem cell transplantation and, more recently, liver transplantation) and an easy screening test, an early diagnosis should be sought before tissue damage occurs irreversibly.


Assuntos
Encefalomiopatias Mitocondriais/epidemiologia , Mutação/genética , Adulto , Feminino , Humanos , Itália/epidemiologia , Idioma , Masculino , Pessoa de Meia-Idade , Encefalomiopatias Mitocondriais/genética , Timidina Fosforilase/genética , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-26029165

RESUMO

Osteosarcoma (OS) is the most common primary bone tumor in children and young adults. Several studies have confirmed the involvement of the insulin-like growth factor (IGF) system in the regulation of OS cell proliferation and differentiation as well as in the protection of cells from chemotherapy. Insulin receptor substrate (IRS)-1 is a critical mediator of IGF-1R signaling, and we recently reported that its overexpression in OS cells increases proliferation, migration, and metastasis both in vitro and in vivo. In this study, we evaluated the efficacy of NT157, a selective inhibitor of IRS-1/2, in a panel of OS cells. A strong dose-dependent inhibition of growth was observed in the MG-63, OS-19, and U-2OS OS cell lines, displaying IC50 values at sub-micromolar doses after 72 h of treatment. Exposure to NT157 elicited dose- and time-dependent decreases in IRS-1 levels. Moreover, a protein analysis showed that the degradation of IRS-1 inhibited the activation of principal downstream mediators of the IGF pathway. NT157 significantly affected the cells' migratory ability, as confirmed by a wound-healing assay. The inhibitor induced cytostatic effects, as evidenced by G2/M cell cycle arrest, and did not affect apoptosis. Consequently, NT157 was combined with drugs used to treat OS in order to capitalize on its therapeutic potential. Simultaneous treatments were made in association with chemotherapeutic agents in a fixed ratio for 72 h and cell proliferation was determined by MTT assay. Synergistic or addictive effects with respect to single agents are expressed as the combination index. Significant synergistic effects were obtained with several targeted drugs, such as Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, and NVP-BEZ235, a dual inhibitor of PI-3K/mTOR. Overall, these findings provide evidence for the effectiveness of a selected inhibitor of IRS-1/2 NT157 in OS cells, displaying a promising approach based on the targeting of IRS-1 combined with other therapies for the treatment of this pediatric solid tumor.

7.
Hum Mol Genet ; 23(6): 1453-66, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24163135

RESUMO

Mitochondrial DNA mutations are currently investigated as modifying factors impinging on tumor growth and aggressiveness, having been found in virtually all cancer types and most commonly affecting genes encoding mitochondrial complex I (CI) subunits. However, it is still unclear whether they exert a pro- or anti-tumorigenic effect. We here analyzed the impact of three homoplasmic mtDNA mutations (m.3460G>A/MT-ND1, m.3571insC/MT-ND1 and m.3243A>G/MT-TL1) on osteosarcoma progression, chosen since they induce different degrees of oxidative phosphorylation impairment. In fact, the m.3460G>A/MT-ND1 mutation caused only a reduction in CI activity, whereas the m.3571insC/MT-ND1 and the m.3243A>G/MT-TL1 mutations induced a severe structural and functional CI alteration. As a consequence, this severe CI dysfunction determined an energetic defect associated with a compensatory increase in glycolytic metabolism and AMP-activated protein kinase activation. Osteosarcoma cells carrying such marked CI impairment displayed a reduced tumorigenic potential both in vitro and in vivo, when compared with cells with mild CI dysfunction, suggesting that mtDNA mutations may display diverse impact on tumorigenic potential depending on the type and severity of the resulting oxidative phosphorylation dysfunction. The modulation of tumor growth was independent from reactive oxygen species production but correlated with hypoxia-inducible factor 1α stabilization, indicating that structural and functional integrity of CI and oxidative phosphorylation are required for hypoxic adaptation and tumor progression.


Assuntos
DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Metabolismo Energético , NADH Desidrogenase/metabolismo , Osteossarcoma/genética , RNA de Transferência/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Complexo I de Transporte de Elétrons/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutagênese Insercional , NADH Desidrogenase/genética , Osteossarcoma/patologia , Fosforilação Oxidativa , Mutação Puntual , Espécies Reativas de Oxigênio/metabolismo
8.
Cancer Metab ; 1(1): 11, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24280190

RESUMO

BACKGROUND: Aerobic glycolysis, namely the Warburg effect, is the main hallmark of cancer cells. Mitochondrial respiratory dysfunction has been proposed to be one of the major causes for such glycolytic shift. This hypothesis has been revisited as tumors appear to undergo waves of gene regulation during progression, some of which rely on functional mitochondria. In this framework, the role of mitochondrial complex I is still debated, in particular with respect to the effect of mitochondrial DNA mutations in cancer metabolism. The aim of this work is to provide the proof of concept that functional complex I is necessary to sustain tumor progression. METHODS: Complex I-null osteosarcoma cells were complemented with allotopically expressed complex I subunit 1 (MT-ND1). Complex I re-assembly and function recovery, also in terms of NADH consumption, were assessed. Clones were tested for their ability to grow in soft agar and to generate tumor masses in nude mice. Hypoxia levels were evaluated via pimonidazole staining and hypoxia-inducible factor-1α (HIF-1α) immunoblotting and histochemical staining. 454-pyrosequencing was implemented to obtain global transcriptomic profiling of allotopic and non-allotopic xenografts. RESULTS: Complementation of a truncative mutation in the gene encoding MT-ND1, showed that a functional enzyme was required to perform the glycolytic shift during the hypoxia response and to induce a Warburg profile in vitro and in vivo, fostering cancer progression. Such trigger was mediated by HIF-1α, whose stabilization was regulated after recovery of the balance between α-ketoglutarate and succinate due to a recuperation of NADH consumption that followed complex I rescue. CONCLUSION: Respiratory complex I is essential for the induction of Warburg effect and adaptation to hypoxia of cancer cells, allowing them to sustain tumor growth. Differently from other mitochondrial tumor suppressor genes, therefore, a complex I severe mutation such as the one here reported may confer anti-tumorigenic properties, highlighting the prognostic values of such genetic markers in cancer.

9.
PLoS One ; 8(12): e83832, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391834

RESUMO

Metformin, a well-known insulin-sensitizer commonly used for type 2 diabetes therapy, has recently emerged as potentially very attractive drug also in oncology. It is cheap, it is relatively safe and many reports have indicated effects in cancer prevention and therapy. These desirable features are particularly interesting for pediatric sarcomas, a group of rare tumors that have been shown to be dependent on IGF and insulin system for pathogenesis and progression. Metformin exerts anti-mitogenic activity in several cancer histotypes through several molecular mechanisms. In this paper, we analyzed its effects against osteosarcoma, Ewing sarcoma and rhabdomyosarcoma, the three most common pediatric sarcomas. Despite in vitro metformin gave remarkable antiproliferative and chemosensitizing effects both in sensitive and chemoresistant cells, its efficacy was not confirmed against Ewing sarcoma xenografts neither as single agent nor in combination with vincristine. This discrepancy between in vitro and in vivo effects may be due to hypoxia, a common feature of solid tumors. We provide evidences that in hypoxia conditions metformin was not able to activate AMPK and inhibit mTOR signaling, which likely prevents the inhibitory effects of metformin on tumor growth. Thus, although metformin may be considered a useful complement of conventional chemotherapy in normoxia, its therapeutic value in highly hypoxic tumors may be more limited. The impact of hypoxia should be considered when novel therapies are planned for pediatric sarcomas.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipóxia/fisiopatologia , Metformina/farmacologia , Osteossarcoma/tratamento farmacológico , Rabdomiossarcoma/tratamento farmacológico , Sarcoma de Ewing/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Criança , Ensaio de Imunoadsorção Enzimática , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Nus , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Pediatria , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Células Tumorais Cultivadas , Vincristina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Res ; 71(19): 6220-9, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21852384

RESUMO

The oncogenic versus suppressor roles of mitochondrial genes have long been debated. Peculiar features of mitochondrial genetics such as hetero/homoplasmy and mutation threshold are seldom taken into account in this debate. Mitochondrial DNA (mtDNA) mutations generally have been claimed to be protumorigenic, but they are also hallmarks of mostly benign oncocytic tumors wherein they help reduce adaptation to hypoxia by destabilizing hypoxia-inducible factor-1α (HIF1α). To determine the influence of a disassembling mtDNA mutation and its hetero/homoplasmy on tumorigenic and metastatic potential, we injected mice with tumor cells harboring different loads of the gene MTND1 m.3571insC. Cell cultures obtained from tumor xenografts were then analyzed to correlate energetic competence, apoptosis, α-ketoglutarate (α-KG)/succinate (SA) ratio, and HIF1α stabilization with the mutation load. A threshold level for the antitumorigenic effect of MTND1 m.3571insC mutation was defined, above which tumor growth and invasiveness were reduced significantly. Notably, HIF1α destabilization and downregulation of HIF1α-dependent genes occurred in cells and tumors lacking complex I (CI), where there was an associated imbalance of α-KG/SA despite the presence of an actual hypoxic environment. These results strongly implicate mtDNA mutations as a cause of oncocytic transformation. Thus, the antitumorigenic and antimetastatic effects of high loads of MTND1 m.3571insC, following CI disassembly, define a novel threshold-regulated class of cancer genes. We suggest these genes be termed oncojanus genes to recognize their ability to contribute either oncogenic or suppressive functions in mitochondrial settings during tumorigenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mutação , NADH Desidrogenase/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Animais , Apoptose/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Complexo I de Transporte de Elétrons/metabolismo , Genes Mitocondriais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácidos Cetoglutáricos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/metabolismo , Ácido Succínico/metabolismo
11.
Hum Mol Genet ; 19(6): 1019-32, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20028790

RESUMO

We previously showed that disruptive complex I mutations in mitochondrial DNA are the main genetic hallmark of oncocytic tumors of the thyroid and kidney. We here report a high frequency of homoplasmic disruptive mutations in a large panel of oncocytic pituitary and head-and-neck tumors. The presence of such mutations implicates disassembly of respiratory complex I in vivo which in turn contributes to the inability of oncocytic tumors to stabilize HIF1alpha and to display pseudo-hypoxia. By utilizing transmitochondrial cytoplasmic hybrids (cybrids), we induced the shift to homoplasmy of a truncating mutation in the mitochondria-coded MTND1 gene. Such shift is associated with a profound metabolic impairment leading to the imbalance of alpha-ketoglutarate and succinate, the Krebs cycle metabolites which are the main responsible for HIF1alpha stabilization. We conclude that the main hallmarks of oncocytic transformation, namely the occurrence of homoplasmic disruptive mutations and complex I disassembly, may explain the benign nature of oncocytic neoplasms through lack of HIF1alpha stabilization.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia Celular , Respiração Celular , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/metabolismo , Fumarato Hidratase/genética , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Cabeça e Pescoço/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ácidos Cetoglutáricos/metabolismo , Mutação/genética , NADH Desidrogenase/genética , Fenótipo , Biossíntese de Proteínas , Estabilidade Proteica , RNA de Transferência/genética , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/genética , Ácido Succínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA