Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 166, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877575

RESUMO

BACKGROUND: Breast cancer (BC) is a complex disease, showing heterogeneity in the genetic background, molecular subtype, and treatment algorithm. Historically, treatment strategies have been directed towards cancer cells, but these are not the unique components of the tumor bulk, where a key role is played by the tumor microenvironment (TME), whose better understanding could be crucial to obtain better outcomes. METHODS: We evaluated mitochondrial transfer (MT) by co-culturing Adipose stem cells with different Breast cancer cells (BCCs), through MitoTracker assay, Mitoception, confocal and immunofluorescence analyses. MT inhibitors were used to confirm the MT by Tunneling Nano Tubes (TNTs). MT effect on multi-drug resistance (MDR) was assessed using Doxorubicin assay and ABC transporter evaluation. In addition, ATP production was measured by Oxygen Consumption rates (OCR) and Immunoblot analysis. RESULTS: We found that MT occurs via Tunneling Nano Tubes (TNTs) and can be blocked by actin polymerization inhibitors. Furthermore, in hybrid co-cultures between ASCs and patient-derived organoids we found a massive MT. Breast Cancer cells (BCCs) with ASCs derived mitochondria (ADM) showed a reduced HIF-1α expression in hypoxic conditions, with an increased ATP production driving ABC transporters-mediated multi-drug resistance (MDR), linked to oxidative phosphorylation metabolism rewiring. CONCLUSIONS: We provide a proof-of-concept of the occurrence of Mitochondrial Transfer (MT) from Adipose Stem Cells (ASCs) to BC models. Blocking MT from ASCs to BCCs could be a new effective therapeutic strategy for BC treatment.


Assuntos
Neoplasias da Mama , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Mitocôndrias , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Mitocôndrias/metabolismo , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Cancers (Basel) ; 16(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398215

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), a neoplasm of the gastrointestinal tract, is the most common pancreatic malignancy (90%) and the fourth highest cause of cancer mortality worldwide. Surgery intervention is currently the only strategy able to offer an advantage in terms of overall survival, but prognosis remains poor even for operated patients. Therefore, the development of robust biomarkers for early diagnosis and prognostic stratification in clinical practice is urgently needed. In this work, we investigated deregulated microRNAs (miRNAs) in tissues from PDAC patients with high (G3) or low (G2) histological grade and with (N+) or without (N-) lymph node metastases. miRNA expression profiling was performed by a comprehensive PCR array and subsequent validation by RT-qPCR. The results showed a significant increase in miR-1-3p, miR-31-5p, and miR-205-5p expression in G3 compared to G2 patients (** p < 0.01; *** p < 0.001; *** p < 0.001). miR-518d-3p upregulation and miR-215-5p downregulation were observed in N+ compared to N- patients. A statistical analysis performed using OncomiR program showed the significant involvement (p < 0.05) of two miRNAs (miR-31 and miR-205) in the histological grade of PDAC patients. Also, an expression analysis in PDAC patients showed that miR-31 and miR-205 had the highest expression at grade 3 compared with normal and other tumor grades. Overall, survival plots confirmed that the overexpression of miR-31 and miR-205 was significantly correlated with decreased survival in TCGA PDAC clinical samples. A KEGG pathway analysis showed that all three miRNAs are involved in the regulation of multiple pathways, including the Hippo signaling, adherens junction and microRNAs in cancer, along with several target genes. Based on in silico analysis and experimental validation, our study suggests the potential role of miR-1-3p, miR-31-5p, and miR-205-5p as useful clinical biomarkers and putative therapeutic targets in PDAC, which should be further investigated to determine the specific molecular processes affected by their aberrant expression.

3.
Oxid Med Cell Longev ; 2021: 3337013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336090

RESUMO

Osteosarcoma is a bone cancer characterized by the production of osteoid tissue and immature bone from mesenchymal cells. Osteosarcoma mainly affects long bones (femur is most frequently site) and occur in children and young adults with greater incidence. Here, we investigated the role accomplished by polydatin, a natural antioxidative compound, in promoting osteogenic differentiation alone or after radiation therapy on osteosarcoma cells. In vitro, polydatin significantly induced cell cycle arrest in S-phase and enhanced bone alkaline phosphatase activity. Moreover, the differentiation process was paralleled by the activation of Wnt-ß-catenin pathway. In combination with radiotherapy, the pretreatment with polydatin promoted a radiosensitizing effect on osteosarcoma cancer cells as demonstrated by the upregulation of osteogenic markers and reduced clonogenic survival of tumor cells. Additionally, we analyzed, by mass spectrometry, the secretion of sphingolipid, ceramides, and their metabolites in osteosarcoma cells treated with polydatin. Overall, our results demonstrate that polydatin, through the secretion of sphingolipids and ceramide, induced osteogenic differentiation, alone and in the presence of ionizing therapy. Future investigations are needed to validate the use of polydatin in clinical practice as a potentiating agent of radiotherapy-induced anticancer effects.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Glucosídeos/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Estilbenos/uso terapêutico , Diferenciação Celular , Medicamentos de Ervas Chinesas/farmacologia , Glucosídeos/farmacologia , Humanos , Estilbenos/farmacologia
4.
Cancers (Basel) ; 13(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439390

RESUMO

BACKGROUND: in recent years, the management of advanced colorectal cancer (CRC) has been greatly improved with integrated strategies including stereotactic radiation therapy (SRT). The administration of SRT has been demonstrated, particularly in oligo-metastatic (om) CRC, to be a safe and effective option. Interestingly, it has been demonstrated that SRT can induce regression of tumors in non-irradiated regions ("abscopal effect") through stimulation of anti-tumor immune effects ("radiation-induced immunity"). We have recently shown that lung-limited omCRC is characterized by regression of tumor clones bearing specific key driver gene mutations. AIMS: to assess the genetic evolution on tumor cancer cells induced by SRT in lung-limited omCRC. Secondary objectives included descriptions of the abscopal effect, responses' duration, toxicity, and progression-free survival. A translational research will be performed to evaluate tumor genetic evolution (through liquid biopsies and Next Generation Sequencing), HLA class I repertoire, peripheral immune cells, and cytokine dynamics. METHODS: PRELUDE-1 is a prospective translational study. SRT will be administered only to the largest nodule (with a maximum diameter ≤ 25 mm) in omCRC with two or three radiologically evident lesions. The sample size is based on the innovative hypothesis that radiation-induced immunity could induce regression of tumor clones bearing KRAS oncogene mutations. According to the binomial test, considering the frequency of KRAS mutations and assuming a probability of mutant KRAS→wild type KRAS of p0 = 0.0077, with α = 0.05 and 1-ß = 0.60, the final sample size is 25 patients.

5.
Biophys Rev ; 6(1): 133-160, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28509964

RESUMO

First coined by Alexander Sandow in 1952, the term excitation-contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca2+ release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca2+ from the SR and transient increase of Ca2+ concentration in the myoplasm, (6) activation of the myoplasmic Ca2+ buffering system and the contractile apparatus, followed by (7) Ca2+ disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca2+ adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na+/Ca2+ exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca2+ entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca2+ sparks.

6.
Pflugers Arch ; 455(4): 733-43, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17676335

RESUMO

We have studied the effects of mitochondria poisoning by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) on Ca(2+) signaling in enzymatically dissociated mouse flexor digitorum brevis (FDB) muscle fibers. We used Fura-2AM to measure resting [Ca(2+)](i) and MagFluo-4AM to measure Ca(2+) transients. Exposure to FCCP (2 microM, 2 min) caused a continuous increase in [Ca(2+)](i) at a rate of 0.60 nM/s and a drastic reduction of electrically elicited Ca(2+) transients without much effect on their decay phase. Half of the maximal effect occurred at [Ca(2+)](i) = 220 nM. This effect was partially reversible after long recuperation and was not diminished by Tiron, a reactive oxygen species (ROS) scavenger. FCCP had no effects on fiber excitability as shown by the generation of action potentials. 4CmC, an agonist of ryanodine receptors, induced a massive Ca(2+) release. FCCP diminished the rate but not the amount of Ca(2+) released, indicating that depletion of Ca(2+) stores did not cause the decrease in Ca(2+) transient amplitude. Ca(2+) transient amplitude could also be diminished, but to a lesser degree, by increases in [Ca(2+)](i) induced by repetitive stimulation of fibers treated with ciclopiazonic acid. This suggests an important role for Ca(2+) in the FCCP effect on transient amplitude.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/toxicidade , Mitocôndrias Musculares/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Desacopladores/toxicidade , Sal Dissódico do Ácido 1,2-Di-Hidroxibenzeno-3,5 Dissulfônico/farmacologia , Potenciais de Ação , Animais , ATPases Transportadoras de Cálcio/antagonistas & inibidores , ATPases Transportadoras de Cálcio/metabolismo , Cresóis/farmacologia , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes , Sequestradores de Radicais Livres/farmacologia , Fura-2/análogos & derivados , Indóis/farmacologia , Cinética , Camundongos , Microscopia de Fluorescência/métodos , Mitocôndrias Musculares/metabolismo , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA