Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 165: 31-39, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968453

RESUMO

Pathological innate and adaptive immune response upon viral infection may lead to cardiac injury and dysfunction. Stabilin-1 is a scavenger receptor that regulates several aspects of the innate immunity. Whether stabilin-1 affects the inflammatory response during viral myocarditis (VM) is entirely unknown. Here, we assess the role of stabilin-1 in the pathogenesis of VM and its suitability as a therapeutic target. Genetic loss of stabilin-1 increased mortality and cardiac necrosis in a mouse model of human Coxsackievirus B3 (CVB3)-induced myocarditis. Absence of stabilin-1 significantly reduced monocyte recruitment and strongly reduced the number of alternatively activated anti-inflammatory macrophages in the heart, enhancing a pro-inflammatory cardiac niche with a detrimental T lymphocyte response during VM. Yeast two-hybrid screening, confirmed by affinity chromatography, identified fibronectin as a stabilin-1 interacting partner. Absence of stabilin-1 specifically decreased monocyte adhesion on extracellular fibronectin in vitro. Loss of Type III repeats Extra Domain A (EDA) of fibronectin during VM also increased the mortality and cardiac necrosis as in stabilin-1 knockout mice, with reduced monocytic cardiac recruitment and increased T lymphocyte response. Collectively, stabilin-1 has an immune-suppressive role of limiting myocardial damage during VM, regulating anti-inflammatory monocyte-recruitment to the site of inflammation.


Assuntos
Infecções por Coxsackievirus , Miocardite , Viroses , Animais , Moléculas de Adesão Celular Neuronais , Modelos Animais de Doenças , Enterovirus Humano B , Fibronectinas , Macrófagos , Camundongos , Monócitos/patologia , Necrose
2.
Cell Death Dis ; 11(8): 654, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811811

RESUMO

Contractile myofiber units are mainly composed of thick myosin and thin actin (F-actin) filaments. F-Actin interacts with Microtubule Associated Monooxygenase, Calponin And LIM Domain Containing 2 (MICAL2). Indeed, MICAL2 modifies actin subunits and promotes actin filament turnover by severing them and preventing repolymerization. In this study, we found that MICAL2 increases during myogenic differentiation of adult and pluripotent stem cells (PSCs) towards skeletal, smooth and cardiac muscle cells and localizes in the nucleus of acute and chronic regenerating muscle fibers. In vivo delivery of Cas9-Mical2 guide RNA complexes results in muscle actin defects and demonstrates that MICAL2 is essential for skeletal muscle homeostasis and functionality. Conversely, MICAL2 upregulation shows a positive impact on skeletal and cardiac muscle commitments. Taken together these data demonstrate that modulations of MICAL2 have an impact on muscle filament dynamics and its fine-tuned balance is essential for the regeneration of muscle tissues.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Contração Muscular/fisiologia , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Actinas/fisiologia , Animais , Diferenciação Celular/fisiologia , Proteínas do Citoesqueleto/fisiologia , Citoesqueleto/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Liso/fisiologia , Miosinas/fisiologia
3.
PLoS One ; 14(4): e0209534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30933983

RESUMO

Secreted protein acidic and rich in cysteine (SPARC) is a non-structural extracellular matrix protein that regulates interactions between the matrix and neighboring cells. In the cardiovascular system, it is expressed by cardiac fibroblasts, endothelial cells, and at lower levels by ventricular cardiomyocytes. SPARC expression levels are increased upon myocardial injury and also during hypertrophy and fibrosis. We have previously shown that SPARC improves cardiac function after myocardial infarction by regulating post-synthetic procollagen processing, however whether SPARC directly affects cardiomyocyte contraction is still unknown. In this study we demonstrate a novel inotropic function for extracellular SPARC in the healthy heart as well as in the diseased state after myocarditis-induced cardiac dysfunction. We demonstrate SPARC presence on the cardiomyocyte membrane where it is co-localized with the integrin-beta1 and the integrin-linked kinase. Moreover, extracellular SPARC directly increases cardiomyocyte cell shortening ex vivo and cardiac function in vivo, both in healthy myocardium and during coxsackie virus-induced cardiac dysfunction. In conclusion, we demonstrate a novel inotropic function for SPARC in the heart, with a potential therapeutic application when myocyte contractile function is diminished such as that caused by a myocarditis-related cardiac injury.


Assuntos
Miocardite/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Osteonectina/metabolismo , Animais , Células Cultivadas , Infecções por Coxsackievirus/complicações , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/virologia , Masculino , Camundongos , Contração Miocárdica , Miocardite/metabolismo , Miocardite/virologia , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/virologia , Osteonectina/análise , Ratos Wistar
4.
Matrix Biol ; 74: 21-34, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29730504

RESUMO

Myocardial damage as a consequence of cardiotropic viruses leads to a broad variety of clinical presentations and is still a complicated condition to diagnose and treat. Whereas the extracellular matrix protein Secreted Protein Acidic and Rich in Cysteine or SPARC has been implicated in hypertensive and ischemic heart disease by modulating collagen production and cross-linking, its role in cardiac inflammation and endothelial function is yet unknown. Absence of SPARC in mice resulted in increased cardiac inflammation and mortality, and reduced cardiac systolic function upon coxsackievirus-B3 induced myocarditis. Intra-vital microscopic imaging of the microvasculature of the cremaster muscle combined with electron microscopic imaging of the microvasculature of the cardiac muscle uncovered the significance of SPARC in maintaining endothelial glycocalyx integrity and subsequent barrier properties to stop inflammation. Moreover, systemic administration of recombinant SPARC restored the endothelial glycocalyx and consequently reversed the increase in inflammation and mortality observed in SPARC KO mice in response to viral exposure. Reducing the glycocalyx in vivo by systemic administration of hyaluronidase, an enzyme that degrades the endothelial glycocalyx, mimicked the barrier defects found in SPARC KO mice, which could be restored by subsequent administration of recombinant SPARC. In conclusion, the secreted glycoprotein SPARC protects against adverse cardiac inflammation and mortality by improving the glycocalyx function and resulting endothelial barrier function during viral myocarditis.


Assuntos
Infecções por Coxsackievirus/metabolismo , Hialuronoglucosaminidase/farmacologia , Miocardite/virologia , Osteonectina/genética , Osteonectina/metabolismo , Músculos Abdominais/irrigação sanguínea , Músculos Abdominais/virologia , Animais , Infecções por Coxsackievirus/genética , Modelos Animais de Doenças , Enterovirus Humano B/patogenicidade , Técnicas de Inativação de Genes , Glicocálix/química , Masculino , Camundongos , Microscopia Eletrônica , Miocardite/genética , Miocardite/metabolismo
5.
Matrix Biol ; 66: 110-124, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28958774

RESUMO

The small leucine-rich proteoglycan osteoglycin has been implicated in matrix homeostasis in different organs, including the ischemic heart. However, whether osteoglycin modulates cardiac hypertrophy, fibrosis or inflammation in hypertensive heart disease and during aging remains unknown. Angiotensin-II-induced pressure overload increases cardiac osteoglycin expression, concomitant with the onset of inflammation and extracellular matrix deposition. Interestingly aging led to decreased cardiac levels of osteoglycin, yet absence of osteoglycin did not affect organ structure or cardiac function up to the age of 18months. However, Angiotensin-II infusion in combination with aging resulted in exaggerated cardiac fibrosis and inflammation in the osteoglycin null mice as compared to wild-type mice, resulting in increased diastolic dysfunction as determined by magnetic resonance imaging. In vitro, stimulation of bone marrow derived macrophages from osteoglycin null mice with Angiotensin-II resulted in significantly higher levels of ICAM-1 as well as pro-inflammatory cytokines and chemokines IL-1ß and MCP-1 as compared to WT cells. Further, stimulation of human cardiac fibroblasts with osteoglycin reduced cell proliferation and inhibited TGF-ß induced collagen gene expression. In mouse cardiac tissue, osteoglycin expression inversely correlated with TGF-ß expression and in cardiac biopsies of aortic stenosis patients, osteoglycin expression is significantly higher than in control biopsies. Interestingly, osteoglycin levels were higher in patients with less severe myocardial fibrosis and overall in the aortic stenosis patients osteoglycin levels negatively correlated with collagen content in the myocardium. In conclusion, osteoglycin expression is increased in the heart in response to pressure overload and its absence results in increased cardiac inflammation and fibrosis resulting in increased diastolic dysfunction.


Assuntos
Angiotensina II/farmacologia , Estenose da Valva Aórtica/metabolismo , Hipertensão/complicações , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miocárdio/patologia , Envelhecimento , Animais , Estenose da Valva Aórtica/genética , Células Cultivadas , Quimiocina CCL2/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibrose , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos
6.
Circulation ; 136(8): 747-761, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28611091

RESUMO

BACKGROUND: Cardiovascular diseases remain the predominant cause of death worldwide, with the prevalence of heart failure continuing to increase. Despite increased knowledge of the metabolic alterations that occur in heart failure, novel therapies to treat the observed metabolic disturbances are still lacking. METHODS: Mice were subjected to pressure overload by means of angiotensin-II infusion or transversal aortic constriction. MicroRNA-146a was either genetically or pharmacologically knocked out or genetically overexpressed in cardiomyocytes. Furthermore, overexpression of dihydrolipoyl succinyltransferase (DLST) in the murine heart was performed by means of an adeno-associated virus. RESULTS: MicroRNA-146a was upregulated in whole heart tissue in multiple murine pressure overload models. Also, microRNA-146a levels were moderately increased in left ventricular biopsies of patients with aortic stenosis. Overexpression of microRNA-146a in cardiomyocytes provoked cardiac hypertrophy and left ventricular dysfunction in vivo, whereas genetic knockdown or pharmacological blockade of microRNA-146a blunted the hypertrophic response and attenuated cardiac dysfunction in vivo. Mechanistically, microRNA-146a reduced its target DLST-the E2 subcomponent of the α-ketoglutarate dehydrogenase complex, a rate-controlling tricarboxylic acid cycle enzyme. DLST protein levels significantly decreased on pressure overload in wild-type mice, paralleling a decreased oxidative metabolism, whereas DLST protein levels and hence oxidative metabolism were partially maintained in microRNA-146a knockout mice. Moreover, overexpression of DLST in wild-type mice protected against cardiac hypertrophy and dysfunction in vivo. CONCLUSIONS: Altogether we show that the microRNA-146a and its target DLST are important metabolic players in left ventricular dysfunction.


Assuntos
Aciltransferases/biossíntese , Cardiomegalia/metabolismo , Regulação Enzimológica da Expressão Gênica , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , Disfunção Ventricular Esquerda/metabolismo , Aciltransferases/genética , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Ratos , Ratos Endogâmicos Lew , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/prevenção & controle
7.
Basic Res Cardiol ; 112(4): 42, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28540528

RESUMO

Optimal healing after myocardial infarction requires not only the induction of inflammation, but also its timely resolution. In patients, 30 days post myocardial infarction, circulating monocytes have increased expression of Semaphorin3A (Sema3A) as compared to directly after admission. This increased expression coincides with increased expression of Cx3CR1-a marker of non-classical monocytes that are important for immune resolution hence proper wound healing. In mice, the expression of Sema3A also increases in response to myocardial ischemia being expressed by infiltrating leukocytes. Comparing Sema3A heterozygote (HZ) and wild type (WT) mice post myocardial infarction, revealed increased presence of leukocytes in the cardiac tissues of HZ mice as compared to WT, with no differences in capillary density, collagen deposition, cardiomyocyte surface area, chemokine-or adhesion molecules expression. Whilst infarct sizes were similar 14 days after myocardial infarction in both genotypes, Sema3A HZ mice had thinner infarcts and reduced cardiac function as compared to their WT littermates. In vitro experiments were conducted to study the role of Sema3A in inflammation and resolution of inflammation as a potential explanation for the differences in leukocyte recruitment and cardiac function observed in our in vivo experiments. Here, recombinant Sema3A protein was able to affect the pro-inflammatory state of cultured bone marrow derived macrophages. First, the pro-inflammatory state was altered by the induced apoptosis of classical macrophages in the presence of Sema3A. Second, Sema3A promoted the polarization of classical macrophages to resolution-phase macrophages and enhanced their efferocytotic ability, findings that were reflected in the infarcted cardiac tissue of the Sema3A HZ mice. Finally, we demonstrated that besides promoting resolution of inflammation, Sema3A was also able to retard the migration of monocytes to the myocardium. Collectively our data demonstrate that Sema3A reduces cardiac inflammation and improves cardiac function after myocardial infarction by promoting the resolution of inflammation.


Assuntos
Infarto do Miocárdio/metabolismo , Miocardite/metabolismo , Miocárdio/metabolismo , Semaforina-3A/metabolismo , Cicatrização , Animais , Apoptose , Células Cultivadas , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Feminino , Heterozigoto , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Knockout , Monócitos/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocardite/genética , Miocardite/patologia , Miocardite/fisiopatologia , Miocárdio/patologia , Fenótipo , Recuperação de Função Fisiológica , Semaforina-3A/deficiência , Semaforina-3A/genética , Transdução de Sinais , Fatores de Tempo
8.
Eur Heart J ; 36(42): 2909-19, 2015 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-26206211

RESUMO

AIMS: Viral myocarditis (VM) is an important cause of heart failure and sudden cardiac death in young healthy adults; it is also an aetiological precursor of dilated cardiomyopathy. We explored the role of the miR-221/-222 family that is up-regulated in VM. METHODS AND RESULTS: Here, we show that microRNA-221 (miR-221) and miR-222 levels are significantly elevated during acute VM caused by Coxsackievirus B3 (CVB3). Both miRs are expressed by different cardiac cells and by infiltrating inflammatory cells, but their up-regulation upon myocarditis is mostly exclusive for the cardiomyocyte. Systemic inhibition of miR-221/-222 in mice increased cardiac viral load, prolonged the viraemic state, and strongly aggravated cardiac injury and inflammation. Similarly, in vitro, overexpression of miR-221 and miR-222 inhibited enteroviral replication, whereas knockdown of this miR-cluster augmented viral replication. We identified and confirmed a number of miR-221/-222 targets that co-orchestrate the increased viral replication and inflammation, including ETS1/2, IRF2, BCL2L11, TOX, BMF, and CXCL12. In vitro inhibition of IRF2, TOX, or CXCL12 in cardiomyocytes significantly dampened their inflammatory response to CVB3 infection, confirming the functionality of these targets in VM and highlighting the importance of miR-221/-222 as regulators of the cardiac response to VM. CONCLUSIONS: The miR-221/-222 cluster orchestrates the antiviral and inflammatory immune response to viral infection of the heart. Its inhibition increases viral load, inflammation, and overall cardiac injury upon VM.


Assuntos
Infecções por Coxsackievirus/virologia , MicroRNAs/fisiologia , Miocardite/virologia , Animais , Infecções por Coxsackievirus/imunologia , Humanos , Imunidade Celular/imunologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Miocardite/imunologia , Miócitos Cardíacos/imunologia , Linfócitos T/imunologia , Regulação para Cima , Carga Viral/imunologia , Replicação Viral/imunologia
9.
Circ Res ; 116(3): 425-36, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25520363

RESUMO

RATIONALE: To maintain cardiac mechanical and structural integrity after an ischemic insult, profound alterations occur within the extracellular matrix. Osteoglycin is a small leucine-rich proteoglycan previously described as a marker of cardiac hypertrophy. OBJECTIVE: To establish whether osteoglycin may play a role in cardiac integrity and function after myocardial infarction (MI). METHODS AND RESULTS: Osteoglycin expression is associated with collagen deposition and scar formation in mouse and human MI. Absence of osteoglycin in mice resulted in significantly increased rupture-related mortality with tissue disruption, intramyocardial bleeding, and increased cardiac dysfunction, despite equal infarct sizes. Surviving osteoglycin null mice had greater infarct expansion in comparison with wild-type mice because of impaired collagen fibrillogenesis and maturation in the infarcts as revealed by electron microscopy and collagen polarization. Absence of osteoglycin did not affect cardiomyocyte hypertrophy in the remodeling remote myocardium. In cultured fibroblasts, osteoglycin knockdown or supplementation did not alter transforming growth factor-ß signaling. Adenoviral overexpression of osteoglycin in wild-type mice significantly improved collagen quality, thereby blunting cardiac dilatation and dysfunction after MI. In osteoglycin null mice, adenoviral overexpression of osteoglycin was unable to prevent rupture-related mortality because of insufficiently restoring osteoglycin protein levels in the heart. Finally, circulating osteoglycin levels in patients with heart failure were significantly increased in the patients with a previous history of MI compared with those with nonischemic heart failure and correlated with survival, left ventricular volumes, and other markers of fibrosis. CONCLUSIONS: Increased osteoglycin expression in the infarct scar promotes proper collagen maturation and protects against cardiac disruption and adverse remodeling after MI. In human heart failure, osteoglycin is a promising biomarker for ischemic heart failure.


Assuntos
Cardiomegalia/metabolismo , Colágeno/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Cardiomegalia/patologia , Cicatriz/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linfotoxina-alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Ratos Endogâmicos Lew , Remodelação Ventricular
10.
Can J Cardiol ; 30(12): 1547-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25442457

RESUMO

BACKGROUND: Diagnosing lymphocytic myocarditis (LM) is challenging because of the large variation in clinical presentation and the limitations inherent in current diagnostic tools. The objective of this study was to analyze infiltration of inflammatory cells in quadriceps skeletal muscle of LM patients and investigate the potential diagnostic value of assaying infiltrating inflammatory cells. METHODS: Quadriceps muscle tissue, obtained at autopsy from control patients (n = 9) and LM patients (n = 21), was analyzed using immunohistochemistry for infiltration of lymphocytes (CD45), macrophages (CD68), neutrophilic granulocytes (myeloperoxidase), and several lymphocyte subtypes (CD3, CD4, CD8, CD20) and using polymerase chain reaction for a panel of myocarditis-associated viruses. Additionally, quadriceps muscle from mice with acute coxsackievirus B3-induced myocarditis and control mice was analyzed for presence of lymphocytes and virus. RESULTS: In quadriceps muscle of LM patients the number of infiltrating lymphocytes were significantly increased and LM was diagnosed with specificity of 100% and sensitivity of 71%. Parvovirus B19 was the primary virus found in our patient groups, found in quadriceps tissue of 3 LM patients (although it was also found in 1 control patient). In the mice, enteroviral RNA was present in the quadriceps muscle, although enteroviral capsid proteins and lymphocyte infiltration were found primarily in the adipose tissue within and directly adjacent to the myocyte tissue, rather than in the myocyte tissue itself. CONCLUSIONS: LM is associated with lymphocyte infiltration and viral presence in quadriceps muscle. This indicates that skeletal muscle biopsy/lymphocyte quantification might be a potential diagnostic tool for LM patients.


Assuntos
Linfócitos/patologia , Miocardite/diagnóstico , Miocárdio/patologia , Músculo Quadríceps/patologia , Animais , Cadáver , Depsipeptídeos , Diagnóstico Diferencial , Modelos Animais de Doenças , Feminino , Seguimentos , Fusarium , Humanos , Imuno-Histoquímica , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C3H , Estudos Retrospectivos
11.
Circulation ; 128(13): 1420-32, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23956210

RESUMO

BACKGROUND: Cardiac hypertrophy and subsequent heart failure triggered by chronic hypertension represent major challenges for cardiovascular research. Beyond neurohormonal and myocyte signaling pathways, growing evidence suggests inflammatory signaling pathways as therapeutically targetable contributors to this process. We recently reported that microRNA-155 is a key mediator of cardiac inflammation and injury in infectious myocarditis. Here, we investigated the impact of microRNA-155 manipulation in hypertensive heart disease. METHODS AND RESULTS: Genetic loss or pharmacological inhibition of the leukocyte-expressed microRNA-155 in mice markedly reduced cardiac inflammation, hypertrophy, and dysfunction on pressure overload. These alterations were macrophage dependent because in vivo cardiomyocyte-specific microRNA-155 manipulation did not affect cardiac hypertrophy or dysfunction, whereas bone marrow transplantation from wild-type mice into microRNA-155 knockout animals rescued the hypertrophic response of the cardiomyocytes and vice versa. In vitro, media from microRNA-155 knockout macrophages blocked the hypertrophic growth of stimulated cardiomyocytes, confirming that macrophages influence myocyte growth in a microRNA-155-dependent paracrine manner. These effects were at least partly mediated by the direct microRNA-155 target suppressor of cytokine signaling 1 (Socs1) because Socs1 knockdown in microRNA-155 knockout macrophages largely restored their hypertrophy-stimulating potency. CONCLUSIONS: Our findings reveal that microRNA-155 expression in macrophages promotes cardiac inflammation, hypertrophy, and failure in response to pressure overload. These data support the causative significance of inflammatory signaling in hypertrophic heart disease and demonstrate the feasibility of therapeutic microRNA targeting of inflammation in heart failure.


Assuntos
Cardiomegalia/patologia , Insuficiência Cardíaca/patologia , Macrófagos/patologia , MicroRNAs/genética , Miócitos Cardíacos/patologia , Animais , Cardiomegalia/genética , Células Cultivadas , Insuficiência Cardíaca/genética , Humanos , Inflamação/genética , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Ratos
12.
EMBO Mol Med ; 5(4): 572-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23460527

RESUMO

Myocarditis, often triggered by viral infection, may lead to heart auto-immunity and dilated cardiomyopathy. What determines the switch between disease resolution and progression is however incompletely understood. We show that pharmacological inhibition of STAT3, the main mediator of IL-6 signalling and of Th17-cell differentiation, protects mice from the development of Experimental Auto-immune Myocarditis reducing liver production of the complement component C3, and can act therapeutically when administered at disease peak. Further, we demonstrate that STAT3 is sufficient when constitutively active for triggering the onset of immune-mediated myocarditis, involving enhanced complement C3 production and IL-6 signalling amplification in the liver. Disease development can be prevented by C3 depletion and IL-6 receptor neutralization. This appears to be relevant to disease pathogenesis in humans, since acute myocarditis patients display significantly elevated circulating IL-6 and C3 levels and activated heart STAT3. Thus, aberrant IL-6/STAT3-mediated induction of liver acute phase response genes including C3, which occurs as a consequence of pre-existing inflammatory conditions, might represent an important factor determining the degree of myocarditis and its clinical outcome.


Assuntos
Cardiomiopatia Dilatada/imunologia , Miocardite/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Linfócitos T CD4-Positivos/microbiologia , Cardiomiopatia Dilatada/genética , Complemento C3/imunologia , Progressão da Doença , Feminino , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Fígado/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocardite/genética , Fator de Transcrição STAT3/genética , Células Th17/imunologia
13.
Circ Res ; 111(4): 415-25, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22715471

RESUMO

RATIONALE: Viral myocarditis results from an adverse immune response to cardiotropic viruses, which causes irreversible myocyte destruction and heart failure in previously healthy people. The involvement of microRNAs and their usefulness as therapeutic targets in this process are unknown. OBJECTIVE: To identify microRNAs involved in viral myocarditis pathogenesis and susceptibility. METHODS AND RESULTS: Cardiac microRNAs were profiled in both human myocarditis and in Coxsackievirus B3-injected mice, comparing myocarditis-susceptible with nonsusceptible mouse strains longitudinally. MicroRNA responses diverged depending on the susceptibility to myocarditis after viral infection in mice. MicroRNA-155, -146b, and -21 were consistently and strongly upregulated during acute myocarditis in both humans and susceptible mice. We found that microRNA-155 expression during myocarditis was localized primarily in infiltrating macrophages and T lymphocytes. Inhibition of microRNA-155 by a systemically delivered LNA-anti-miR attenuated cardiac infiltration by monocyte-macrophages, decreased T lymphocyte activation, and reduced myocardial damage during acute myocarditis in mice. These changes were accompanied by the derepression of the direct microRNA-155 target PU.1 in cardiac inflammatory cells. Beyond the acute phase, microRNA-155 inhibition reduced mortality and improved cardiac function during 7 weeks of follow-up. CONCLUSIONS: Our data show that cardiac microRNA dysregulation is a characteristic of both human and mouse viral myocarditis. The inflammatory microRNA-155 is upregulated during acute myocarditis, contributes to the adverse inflammatory response to viral infection of the heart, and is a potential therapeutic target for viral myocarditis.


Assuntos
Infecções por Coxsackievirus/genética , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , Miocardite/genética , Miocárdio/metabolismo , Animais , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/fisiopatologia , Infecções por Coxsackievirus/terapia , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Enterovirus Humano B/patogenicidade , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Ativação Linfocitária , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Miocardite/imunologia , Miocardite/patologia , Miocardite/fisiopatologia , Miocardite/terapia , Miocardite/virologia , Miocárdio/imunologia , Miocárdio/patologia , Oligonucleotídeos/administração & dosagem , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Fatores de Tempo
14.
J Mol Cell Cardiol ; 51(3): 318-28, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21624372

RESUMO

Clinical use of the antineoplastic agent doxorubicin (DOX) is limited by its cardiomyocyte toxicity. Attempts to decrease cardiomyocyte injury showed promising results in vitro, but failed to reduce the adverse effects of DOX in vivo, suggesting that other mechanisms contribute to its cardiotoxicity as well. Evidence that DOX also induces cardiac injury by compromising extracellular matrix integrity is lacking. The matricellular protein thrombospondin-2 (TSP-2) is known for its matrix-preserving function, and for modulating cellular function. Here, we investigated whether TSP-2 modulates the process of doxorubicin-induced cardiomyopathy (DOX-CMP). TSP-2-knockout (TSP-2-KO) and wild-type (WT) mice were treated with DOX (2 mg/kg/week) for 12 weeks to induce DOX-CMP. Mortality was significantly increased in TSP-2-KO compared to WT mice. Surviving DOX-treated TSP-2-KO mice had depressed cardiac function compared to WT animals, accompanied by increased cardiomyocyte apoptosis and matrix damage. Enhanced myocyte damage in the absence of TSP-2 was associated with impaired activation of the Akt signaling pathway in TSP-2-KO compared to WT. The absence of TSP-2, in vivo and in vitro, reduced Akt activation both under non-treated conditions and after DOX. Importantly, inhibition of Akt phosphorylation in cardiomyocytes significantly reduced TSP-2 expression, unveiling a unique feedback loop between Akt and TSP-2. Finally, enhanced matrix disruption in DOX-treated TSP-2-KO hearts went along with increased matrix metalloproteinase-2 levels. Taken together, this study is the first to provide evidence for the implication of the matrix element TSP-2 in protecting against DOX-induced cardiac injury and dysfunction.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/induzido quimicamente , Doxorrubicina/toxicidade , Matriz Extracelular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Trombospondinas/genética , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Matriz Extracelular/metabolismo , Feminino , Fibrose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Trombospondinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA