Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Assoc Med Microbiol Infect Dis Can ; 7(3): 283-291, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36337604

RESUMO

BACKGROUND: COVID-19 is usually a time-limited disease. However, prolonged infections and reinfections can occur among immunocompromised patients. It can be difficult to distinguish a prolonged infection from a new one, especially when reinfection occurs early. METHODS: We report the case of a 57-year-old man infected with SARS-CoV-2 while undergoing chemotherapy for follicular lymphoma. He experienced prolonged symptomatic infection for 3 months despite a 5-day course of remdesivir and eventually deteriorated and died. RESULTS: Viral genome sequencing showed that his final deterioration was most likely due to reinfection. Serologic studies confirmed that the patient did not seroconvert. CONCLUSIONS: This case report highlights that reinfection can occur rapidly (62-67 d) among immunocompromised patients after a prolonged disease. We provide substantial proof of prolonged infection through repeated nucleic acid amplification tests and positive viral culture at day 56 of the disease course, and we put forward evidence of reinfection with viral genome sequencing.


HISTORIQUE: La COVID-19 est généralement une maladie limitée dans le temps. Toutefois, des infections et réinfections prolongées peuvent survenir chez des patients immunodéprimés. Il peut être difficile de distinguer une infection prolongée d'une nouvelle infection, particulièrement lorsque la réinfection se produit rapidement. MÉTHODOLOGIE: Les auteurs rendent compte du cas d'un homme de 57 ans infecté par le SRAS-CoV-2 alors qu'il était sous chimiothérapie pour soigner un lymphome folliculaire. Il a souffert d'une infection symptomatique prolongée de trois mois, malgré un traitement de cinq jours au remdésivir. Son état s'est finalement détérioré et il est décédé. RÉSULTATS: Le séquençage du génome viral a démontré que la détérioration finale de son état a probablement été causée par une réinfection. Les études sérologiques ont confirmé qu'il n'avait pas présenté de séroconversion. CONCLUSIONS: Le présent rapport de cas établit la possibilité d'une réinfection rapide (au bout de 62 à 67 jours) chez les patients immunodéprimés après une longue maladie. Les auteurs fournissent des preuves substantielles d'une infection prolongée par des tests répétés d'amplification des acides nucléiques et par des cultures virales positives au 56e jour de l'évolution de la maladie, et ils présentent des preuves de réinfection grâce au séquençage du génome viral.

2.
Antimicrob Agents Chemother ; 66(7): e0019822, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35708323

RESUMO

In vitro selection of remdesivir-resistant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed the emergence of a V166L substitution, located outside of the polymerase active site of the Nsp12 protein, after 9 passages of a single lineage. V166L remained the only Nsp12 substitution after 17 passages (10 µM remdesivir), conferring a 2.3-fold increase in 50% effective concentration (EC50). When V166L was introduced into a recombinant SARS-CoV-2 virus, a 1.5-fold increase in EC50 was observed, indicating a high in vitro barrier to remdesivir resistance.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Alanina/análogos & derivados , Alanina/metabolismo , Antivirais/química , Humanos
3.
Viruses ; 14(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215988

RESUMO

The types of interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses are not well-characterized due to the low number of co-infection cases described since the onset of the pandemic. We have evaluated the interactions between SARS-CoV-2 (D614G mutant) and influenza A(H1N1)pdm09 or respiratory syncytial virus (RSV) in the nasal human airway epithelium (HAE) infected simultaneously or sequentially (24 h apart) with virus combinations. The replication kinetics of each virus were determined by RT-qPCR at different post-infection times. Our results showed that during simultaneous infection, SARS-CoV-2 interferes with RSV-A2 but not with A(H1N1)pdm09 replication. The prior infection of nasal HAE with SARS-CoV-2 reduces the replication kinetics of both respiratory viruses. SARS-CoV-2 replication is decreased by a prior infection with A(H1N1)pdm09 but not with RSV-A2. The pretreatment of nasal HAE with BX795, a TANK-binding kinase 1 inhibitor, partially alleviates the reduced replication of SARS-CoV-2 or influenza A(H1N1)pdm09 during sequential infection with both virus combinations. Thus, a prior infection of nasal HAE with SARS-CoV-2 interferes with the replication kinetics of A(H1N1)pdm09 and RSV-A2, whereas only A(H1N1)pdm09 reduces the subsequent infection with SARS-CoV-2. The mechanism involved in the viral interference between SARS-CoV-2 and A(H1N1)pdm09 is mediated by the production of interferon.


Assuntos
Células Epiteliais/virologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Nasofaringe/citologia , Vírus Sincicial Respiratório Humano/fisiologia , SARS-CoV-2/fisiologia , Interferência Viral , Replicação Viral , Coinfecção , Humanos , Interações Microbianas , Nasofaringe/virologia
4.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938766

RESUMO

The role of a signaling pathway through macrophage colony-stimulating factor (MCSF) and its receptor, macrophage colony-stimulating factor 1 receptor (CSF1R), during experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE) was studied by two different approaches. First, we evaluated the effect of stimulation of the MCSF/CSF1R axis before infection. Exogenous MCSF (40 µg/kg of body weight intraperitoneally [i.p.]) was administered once daily to BALB/c mice on days 4 and 2 before intranasal infection with 2,500 PFU of HSV-1. MCSF treatment significantly increased mouse survival compared to saline (50% versus 10%; P = 0.0169). On day 6 postinfection (p.i.), brain viral titers were significantly decreased, whereas beta interferon (IFN-ß) was significantly increased in mice treated with MCSF compared to mice treated with saline. The number of CD68+ (a phagocytosis marker) microglial cells was significantly increased in MCSF-treated mice compared to the saline-treated group. Secondly, we conditionally depleted CSF1R on microglial cells of CSF1R-loxP-CX3CR1-cre/ERT2 mice (in a C57BL/6 background) through induction with tamoxifen. The mice were then infected intranasally with 600,000 PFU of HSV-1. The survival rate of mice depleted of CSF1R (knockout [KO] mice) was significantly lower than that of wild-type (WT) mice (0% versus 67%). Brain viral titers and cytokine/chemokine levels were significantly higher in KO than in WT animals on day 6 p.i. Furthermore, increased infiltration of monocytes into the brains of WT mice was seen on day 6 p.i., but not in KO mice. Our results suggest that microglial cells are essential to control HSE at early stages of the disease and that the MCSF/CSF1R axis could be a therapeutic target to regulate their response to infection.IMPORTANCE Microglia appear to be one of the principal regulators of neuroinflammation in the central nervous system (CNS). An increasing number of studies have demonstrated that the activation of microglia could result in either beneficial or detrimental effects in different CNS disorders. Hence, the role of microglia during herpes simplex virus encephalitis (HSE) has not been fully characterized. Using experimental mouse models, we showed that an early activation of the MCSF/CSF1R axis improved the outcome of the disease, possibly by inducing a proliferation of microglia. In contrast, depletion of microglia before HSV-1 infection worsened the prognosis of HSE. Thus, an early microglial response followed by sustained infiltration of monocytes and T cells into the brain seem to be key components for a better clinical outcome. These data suggest that microglia could be a potential target for immunomodulatory strategies combined with antiviral therapy to better control the outcome of this devastating disease.


Assuntos
Encefalite por Herpes Simples/metabolismo , Herpesvirus Humano 1/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Microglia/metabolismo , Microglia/virologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Animais , Encéfalo/virologia , Sistema Nervoso Central/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fator Estimulador de Colônias de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Fagocitose , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Carga Viral
5.
Vaccine ; 38(9): 2122-2127, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32007293

RESUMO

Human metapneumovirus (hMPV) is an important respiratory pathogen especially in young children and elderly subjects. Our objective was to assess the immunogenicity and protection conferred by predominant pre- and post-fusion (F) hMPV-F constructs in Balb/C mice. Immunizations without adjuvant were not immunogenic whereas alum-adjuvanted hMPV-F proteins, regardless of their conformations, generated comparable neutralizing antibody titers with undetectable pulmonary viral titers following viral challenge. In conclusion, we found no apparent advantage for mixtures of predominant pre-fusion F proteins over post-fusion conformations for hMPV vaccination in opposite to recent data obtained with the human respiratory syncytial virus.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Metapneumovirus , Infecções por Paramyxoviridae , Proteínas Virais de Fusão/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Metapneumovirus/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Paramyxoviridae/prevenção & controle , Vacinas de Subunidades Antigênicas/imunologia , Proteínas Virais de Fusão/administração & dosagem
6.
Antivir Ther ; 24(8): 581-587, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32031540

RESUMO

BACKGROUND: Neuraminidase (NA) inhibitors (NAIs), including oseltamivir and zanamivir, play an important therapeutic role against influenza infections in immunocompromised patients. In such settings, however, NAI therapy may lead to the emergence of resistance involving mutations within the influenza surface genes. The aim of this study was to investigate the evolution of NA and haemagglutinin (HA) genes of influenza A(H1N1)pdm09 virus in an immunocompromised patient receiving oseltamivir then zanamivir therapies. METHODS: Nasopharyngeal swab (NPS) samples were collected between 27 January 2018 and 11 April 2018 from a haematopoietic stem cell transplant recipient. These include 10 samples collected either pre-therapy, during oseltamivir and zanamivir treatment as well as after therapy. The A(H1N1)pdm09 HA/NA genes were sequenced. The H275Y NA substitution was quantified by droplet digital RT-PCR assay. A(H1N1)pdm09 recombinant viruses containing HA mutations were tested by HA elution experiments to investigate in vitro binding properties. RESULTS: Oseltamivir rapidly induced the H275Y NA mutation which constituted 98.33% of the viral population after 15 days of oseltamivir treatment. The related HA gene contained S135A and P183S substitutions within the receptor-binding site. After a switch to zanamivir, 275H/Y and 119E/G/D mixed populations were detected. In the last samples, the double H275Y-E119G NA variant dominated with S135A and P183S HA substitutions. CONCLUSIONS: This report confirms that oseltamivir can rapidly induce the emergence of the H275Y substitution in A(H1N1)pdm09 viruses and subsequent switch to zanamivir can lead to additional substitutions at codon E119 resulting in multi-drug resistance. Such data additionally suggest a potential compensatory role for HA substitutions near the receptor binding site.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral Múltipla , Hospedeiro Imunocomprometido , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Idoso , Antivirais/administração & dosagem , Antivirais/farmacologia , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Transplante de Células-Tronco Hematopoéticas , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Masculino , Neuraminidase/antagonistas & inibidores , Oseltamivir/administração & dosagem , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Transplantados , Zanamivir/administração & dosagem , Zanamivir/farmacologia , Zanamivir/uso terapêutico
7.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468878

RESUMO

Human herpesviruses 6A/B (HHV-6A/B) can integrate their viral genomes in the telomeres of human chromosomes. The viral and cellular factors contributing to HHV-6A/B integration remain largely unknown, mostly due to the lack of efficient and reproducible cell culture models to study HHV-6A/B integration. In this study, we characterized the HHV-6A/B integration efficiencies in several human cell lines using two different approaches. First, after a short-term infection (5 h), cells were processed for single-cell cloning and analyzed for chromosomally integrated HHV-6A/B (ciHHV-6A/B). Second, cells were infected with HHV-6A/B and allowed to grow in bulk for 4 weeks or longer and then analyzed for the presence of ciHHV-6. Using quantitative PCR (qPCR), droplet digital PCR, and fluorescent in situ hybridization, we could demonstrate that HHV-6A/B integrated in most human cell lines tested, including telomerase-positive (HeLa, MCF-7, HCT-116, and HEK293T) and telomerase-negative cell lines (U2OS and GM847). Our results also indicate that inhibition of DNA replication, using phosphonoacetic acid, did not affect HHV-6A/B integration. Certain clones harboring ciHHV-6A/B spontaneously express viral genes and proteins. Treatment of cells with phorbol ester or histone deacetylase inhibitors triggered the expression of many viral genes, including U39, U90, and U100, without the production of infectious virus, suggesting that the tested stimuli were not sufficient to trigger full reactivation. In summary, both integration models yielded comparable results and should enable the identification of viral and cellular factors contributing to HHV-6A/B integration and the screening of drugs influencing viral gene expression, as well as the release of infectious HHV-6A/B from the integrated state.IMPORTANCE The analysis and understanding of HHV-6A/B genome integration into host DNA is currently limited due to the lack of reproducible and efficient viral integration systems. In the present study, we describe two quantitative cell culture viral integration systems. These systems can be used to define cellular and viral factors that play a role in HHV-6A/B integration. Furthermore, these systems will allow us to decipher the conditions resulting in virus gene expression and excision of the integrated viral genome resulting in reactivation.


Assuntos
Herpesvirus Humano 6/fisiologia , Cultura de Vírus/métodos , Integração Viral , Técnicas de Cultura de Células/métodos , Linhagem Celular , Humanos , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase em Tempo Real
8.
J Clin Virol ; 58(3): 541-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24041471

RESUMO

BACKGROUND: Human metapneumovirus (HMPV) is a recently discovered paramyxovirus that is a major cause of respiratory infections worldwide. OBJECTIVES: We aim to describe the molecular evolution of the HMPV F (fusion) and G (attachment) surface glycoproteins because they are targets for vaccines, monoclonal antibodies and antivirals currently in development. STUDY SETTING: Nasopharyngeal aspirates were collected in children <3 years old with acute respiratory infection in Quebec City during 2001-2010. HMPV-positive samples (n = 163) underwent HMPV-F and -G gene sequencing. Furthermore, HMPV-F (n = 124) and -G (n = 217) sequences were obtained from GenBank and other studies. Evolutionary analyses (phylogenetic reconstruction, sequence identity, detection of recombination and adaptive evolution) were computed. RESULTS: Sequences clustered into 5 genetic lineages (A1, A2a, A2b, B1 and B2). Multiple lineages circulated each year in Quebec City. With the exception of B1, each of the 5 subgroups was the predominant lineage during ≥1 season. The A1 lineage was not detected since 2002-2003 in our local cohort. There was no evidence of inter- or intragenic recombination. HMPV-F was highly conserved, whereas HMPV-G exhibited greater diversity. HMPV-F demonstrated strong evidence of purifying selection, both overall and in an abundance of negatively selected amino acid sites. In contrast, sites under diversifying selection were detected in all HMPV-G lineages (range, 4-15), all of which were located in the ectodomain. CONCLUSIONS: Predominant circulating HMPV lineages vary by year. HMPV-F is highly constrained and undergoes significant purifying selection. Given its high genetic variability, we found a modest number of positively selected sites in HMPV-G.


Assuntos
Evolução Molecular , Variação Genética , Glicoproteínas/genética , Metapneumovirus/classificação , Metapneumovirus/genética , Infecções por Paramyxoviridae/virologia , Proteínas Virais de Fusão/genética , Proteínas Virais/genética , Pré-Escolar , Estudos de Coortes , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Metapneumovirus/isolamento & purificação , Epidemiologia Molecular , Dados de Sequência Molecular , Nasofaringe/virologia , Infecções por Paramyxoviridae/epidemiologia , Estudos Prospectivos , Quebeque/epidemiologia , RNA Viral/genética , Análise de Sequência de DNA
9.
Emerg Infect Dis ; 18(1): 120-4, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22264682

RESUMO

To assess molecular evolution of the respiratory syncytial virus (RSV) fusion gene, we analyzed RSV-positive specimens from 123 children in Canada who did or did not receive RSV immunoprophylaxis (palivizumab) during 2006-2010. Resistance-conferring mutations within the palivizumab binding site occurred in 8.7% of palivizumab recipients and none of the nonrecipients.


Assuntos
Evolução Molecular , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/genética , Proteínas Virais de Fusão/metabolismo , Canadá/epidemiologia , Estudos de Coortes , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Proteínas Virais de Fusão/genética
10.
J Clin Microbiol ; 47(3): 743-50, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19158263

RESUMO

Respiratory virus infections are a major health concern and represent the primary cause of testing consultation and hospitalization for young children. We developed and compared two assays that allow the detection of up to 23 different respiratory viruses that frequently infect children. The first method consisted of single TaqMan quantitative real-time PCR assays in a 96-well-plate format. The second consisted of a multiplex PCR followed by primer extension and microarray hybridization in an integrated molecular diagnostic device, the Infiniti analyzer. Both of our assays can detect adenoviruses of groups A, B, C, and E; coronaviruses HKU1, 229E, NL63, and OC43; enteroviruses A, B, C, and D; rhinoviruses of genotypes A and B; influenza viruses A and B; human metapneumoviruses (HMPV) A and B, human respiratory syncytial viruses (HRSV) A and B; and parainfluenza viruses of types 1, 2, and 3. These tests were used to identify viruses in 221 nasopharyngeal aspirates obtained from children hospitalized for respiratory tract infections. Respiratory viruses were detected with at least one of the two methods in 81.4% of the 221 specimens: 10.0% were positive for HRSV A, 38.0% for HRSV B, 13.1% for influenzavirus A, 8.6% for any coronaviruses, 13.1% for rhinoviruses or enteroviruses, 7.2% for adenoviruses, 4.1% for HMPV, and 1.5% for parainfluenzaviruses. Multiple viral infections were found in 13.1% of the specimens. The two methods yielded concordant results for 94.1% of specimens. These tests allowed a thorough etiological assessment of respiratory viruses infecting children in hospital settings and would assist public health interventions.


Assuntos
Análise em Microsséries/métodos , Reação em Cadeia da Polimerase/métodos , Infecções Respiratórias/virologia , Viroses/diagnóstico , Vírus/classificação , Vírus/isolamento & purificação , Pré-Escolar , Humanos , Lactente , Nasofaringe/virologia , Sensibilidade e Especificidade , Viroses/virologia , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA