Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Br J Dermatol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820176

RESUMO

BACKGROUND: Recessive dystrophic epidermolysis bullosa (RDEB) is a blistering disease caused by mutations in the gene encoding type VII collagen (C7). RDEB is associated with fibrosis, which is responsible for severe complications. The phenotypic variability observed in RDEB siblings suggests that epigenetic modifications contribute to disease severity. Identifying epigenetic changes may help to uncover molecular mechanisms underlying RDEB pathogenesis and new therapeutic targets. OBJECTIVES: To investigate histone acetylation in RDEB skin and to explore histone deacetylase inhibitors (HDACis) as therapeutic molecules capable of counteracting fibrosis and disease progression in RDEB mice. METHODS: Acetylated histone levels were detected in human skin by immunofluorescence and in RDEB fibroblasts by ELISA. The effects of Givinostat and valproic acid (VPA) on RDEB fibroblast fibrotic behaviour were assessed by collagen-gel contraction assay, Western blot and immunocytofluorescence for α-smooth muscle actin, ELISA for released transforming growth factor-ß1 (TGF-ß1). RNA-seq was performed in HDACi- and vehicle-treated RDEB fibroblasts. VPA was systemically administered to RDEB mice, and effects on overt phenotype were monitored. Fibrosis was investigated in the skin using histological and immunofluorescence analyses. Eye and tongue defects were examined microscopically. Mass spectrometry proteomics was performed on skin protein extracts from VPA-treated RDEB and control mice. RESULTS: Histone acetylation decreases in RDEB skin and primary fibroblasts. RDEB fibroblasts treated with HDACis lowered fibrotic traits including contractility, TGF-ß1 release, and proliferation. VPA administration to RDEB mice mitigated severe manifestations affecting eyes and paws. These effects were associated with fibrosis inhibition. Proteomic analysis of mouse skin revealed that VPA almost normalised protein sets involved in protein synthesis and immune response, processes linked to the increased susceptibility to cancer and bacterial infections observed in RDEB patients. CONCLUSIONS: Dysregulated histone acetylation contributes to RDEB pathogenesis by facilitating the progression of fibrosis. Repurposing of HDACi could be considered for disease-modifying treatments of RDEB.

2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256193

RESUMO

Anaplastic thyroid carcinoma (ATC) is an extremely difficult disease to tackle, with an overall patient survival of only a few months. The currently used therapeutic drugs, such as kinase inhibitors or immune checkpoint inhibitors, can prolong patient survival but fail to eradicate the tumor. In addition, the onset of drug resistance and adverse side-effects over time drastically reduce the chances of treatment. We recently showed that Twist1, a transcription factor involved in the epithelial mesenchymal transition (EMT), was strongly upregulated in ATC, and we wondered whether it might represent a therapeutic target in ATC patients. To investigate this hypothesis, the effects of harmine, a ß-carboline alkaloid shown to induce degradation of the Twist1 protein and to possess antitumoral activity in different cancer types, were evaluated on two ATC-derived cell lines, BHT-101 and CAL-62. The results obtained demonstrated that, in both cell lines, harmine reduced the level of Twist1 protein and reverted the EMT, as suggested by the augmentation of E-cadherin and decrease in fibronectin expression. The drug also inhibited cell proliferation and migration in a dose-dependent manner and significantly reduced the anchorage-independent growth of both ATC cell lines. Harmine was also capable of inducing apoptosis in BHT-101 cells, but not in CAL-62 ones. Finally, the activation of PI3K/Akt signaling, but not that of the MAPK, was drastically reduced in treated cells. Overall, these in vitro data suggest that harmine could represent a new therapeutic option for ATC treatment.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Harmina/farmacologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Proteína 1 Relacionada a Twist/genética , Fosfatidilinositol 3-Quinases , Neoplasias da Glândula Tireoide/tratamento farmacológico
3.
Dev Cell ; 59(3): 308-325.e11, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38159569

RESUMO

The molecular mechanisms by which lymphatic vessels induce cell contact inhibition are not understood. Here, we identify the cGMP-dependent phosphodiesterase 2A (PDE2A) as a selective regulator of lymphatic but not of blood endothelial contact inhibition. Conditional deletion of Pde2a in mouse embryos reveals severe lymphatic dysplasia, whereas blood vessel architecture remains unaltered. In the absence of PDE2A, human lymphatic endothelial cells fail to induce mature junctions and cell cycle arrest, whereas cGMP levels, but not cAMP levels, are increased. Loss of PDE2A-mediated cGMP hydrolysis leads to the activation of p38 signaling and downregulation of NOTCH signaling. However, DLL4-induced NOTCH activation restores junctional maturation and contact inhibition in PDE2A-deficient human lymphatic endothelial cells. In postnatal mouse mesenteries, PDE2A is specifically enriched in collecting lymphatic valves, and loss of Pde2a results in the formation of abnormal valves. Our data demonstrate that PDE2A selectively finetunes a crosstalk of cGMP, p38, and NOTCH signaling during lymphatic vessel maturation.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Vasos Linfáticos , Animais , Humanos , Camundongos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Regulação para Baixo , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Transdução de Sinais
4.
J Clin Med ; 12(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36983233

RESUMO

Benign and malignant thyroid diseases (TDs) have been associated with the occurrence of extrathyroidal malignancies (EMs), including colorectal cancers (CRCs). Such associations have generated a major interest, as their characterization may provide useful clues regarding diseases' etiology and/or progression, with the possible identification of shared congenital and environmental elements. On the other hand, elucidation of the underlying molecular mechanism(s) could lead to an improved and tailored clinical management of these patients and stimulate an increased surveillance of TD patients at higher threat of developing EMs. Here, we will examine the epidemiological, clinical, and molecular findings connecting TD and CRC, with the aim to identify possible molecular mechanism(s) responsible for such diseases' relationship.

5.
Arthroscopy ; 39(4): 1088-1098, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36592698

RESUMO

PURPOSE: To determine whether comparative clinical studies demonstrate significant advantages of revision anterior cruciate ligament reconstruction (RACLR) combined with a lateral extra-articular procedure (LEAP), with respect to graft rupture rates, knee stability, return to sport rates, and patient-reported outcome measures, compared with isolated RACLR. METHODS: A systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews & Meta-Analyses Guidelines. A PubMed search was conducted using the key words "revision anterior cruciate ligament reconstruction" combined with any of the following additional terms, "lateral extra-articular tenodesis" OR "anterolateral ligament reconstruction" OR "Lemaire." All relevant comparative clinical studies were included. Key clinical data were extracted and evaluated. RESULTS: Eight comparative studies (seven Level III studies and a one Level IV study) were identified and included. Most studies reported more favorable outcomes with combined procedures with respect to failure rates (0%-13% following RACLR+LEAP, and 4.4%-21.4% following isolated RACLR), postoperative side-to-side anteroposterior laxity difference (1.3-3.9 mm following RACLR+LEAP and 1.8-5.9 mm following isolated RACLR), and high-grade pivot shift (0%-11.1% following RACLR+LEAP and 10.2%-23.8% in patients following isolated RACLR). There were no consistent differences between isolated and combined procedures with respect to return to sport or patient-reported outcome measures. CONCLUSIONS: This systematic review demonstrates that the addition of a LEAP to RACLR was associated with an advantage with respect to ACL graft failure rates and avoidance of high-grade postoperative knee laxity across almost all included studies. LEVEL OF EVIDENCE: IV, Systematic review of level III to IV studies.


Assuntos
Lesões do Ligamento Cruzado Anterior , Tenodese , Humanos , Ligamento Cruzado Anterior/cirurgia , Volta ao Esporte , Lesões do Ligamento Cruzado Anterior/cirurgia , Articulação do Joelho/cirurgia , Tenodese/métodos , Medidas de Resultados Relatados pelo Paciente
6.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674621

RESUMO

Phosphodiesterases (PDEs) are a superfamily of evolutionarily conserved cyclic nucleotide (cAMP/cGMP)-hydrolyzing enzymes, components of transduction pathways regulating crucial aspects of cell life. Within this family, the cGMP-dependent PDE5 is the major hydrolyzing enzyme in many mammalian tissues, where it regulates a number of cellular and tissular processes. Using Kluyveromyces lactis as a model organism, the murine PDE5A1, A2 and A3 isoforms were successfully expressed and studied, evidencing, for the first time, a distinct role of each isoform in the control, modulation and maintenance of the cellular redox metabolism. Moreover, we demonstrated that the short N-terminal peptide is responsible for the tetrameric assembly of MmPDE5A1 and for the mitochondrial localization of MmPDE5A2. We also analyzed MmPDE5A1, A2 and A3 using small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), structural mass spectrometry (MS) and polyacrylamide gel electrophoresis in their native conditions (native-PAGE) and in the presence of redox agents. These analyses pointed towards the role of a few specific cysteines in the isoforms' oligomeric assembly and the loss of enzymatic activity when modified.


Assuntos
GMP Cíclico , Cisteína , Camundongos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Isoformas de Proteínas , GMP Cíclico/metabolismo , Mamíferos/metabolismo
7.
Transl Psychiatry ; 12(1): 119, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338117

RESUMO

Pharmacological inhibition of phosphodiesterase 2A (PDE2A), which catalyzes the hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), has recently been proposed as a novel therapeutic tool for Fragile X Syndrome (FXS), the leading monogenic cause of Autism Spectrum Disorder (ASD). Here, we investigated the role of PDE2A in ASD pathogenesis using two rat models that reflect one of either the genetic or environmental factors involved in the human disease: the genetic Fmr1-Δexon 8 rat model and the environmental rat model based on prenatal exposure to valproic acid (VPA, 500 mg/kg). Prior to behavioral testing, the offspring was treated with the PDE2A inhibitor BAY607550 (0.05 mg/kg at infancy, 0.1 mg/kg at adolescence and adulthood). Socio-communicative symptoms were assessed in both models through the ultrasonic vocalization test at infancy and three-chamber test at adolescence and adulthood, while cognitive impairments were assessed by the novel object recognition test in Fmr1-Δexon 8 rats (adolescence and adulthood) and by the inhibitory avoidance test in VPA-exposed rats (adulthood). PDE2A enzymatic activity in VPA-exposed infant rats was also assessed. In line with the increased PDE2A enzymatic activity previously observed in the brain of Fmr1-KO animals, we found an altered upstream regulation of PDE2A activity in the brain of VPA-exposed rats at an early developmental age (p < 0.05). Pharmacological inhibition of PDE2A normalized the communicative (p < 0.01, p < 0.05), social (p < 0.001, p < 0.05), and cognitive impairment (p < 0.001) displayed by both Fmr1-Δexon 8 and VPA-exposed rats. Altogether, these data highlight a key role of PDE2A in brain development and point to PDE2A inhibition as a promising pharmacological approach for the deficits common to both FXS and ASD.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/genética , Gravidez , Ratos , Ácido Valproico/farmacologia
8.
Orthop Traumatol Surg Res ; 108(7): 103053, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34530129

RESUMO

INTRODUCTION: Several surgical techniques have been proposed for the treatment of patellar fractures. The aim of this study is to compare the clinical efficacy and complication rates of treatment using suture tape circumferential cerclage (STCC) and metallic wire circumferential cerclage (MWCC) for the surgical treatment of displaced transverse patellar fractures (TPFs). HYPOTHESIS: The hypothesis is that the use of the suture tape would be associated with a significantly lower rate of re-operation than metallic cerclage but no differences in other clinical outcomes. PATIENTS AND METHODS: A retrospective comparative analysis of the clinical outcomes of consecutive patients undergoing fixation of TPFs with either MWCC or STCC between January 2017 and December 2018 was undertaken. All patients underwent evaluation with standardised radiographs at one, three, and six months after surgery to determine rates of union, non-union, loss of fixation and malunion. All patients underwent a final clinical evaluation at 18 months postoperatively to evaluate clinical scores and complications. RESULTS: A total of 26 patients were included in the study. Thirteen patients underwent STCC and 13 underwent MWCC. There were no complications in the STCC group. In the MWCC group, one patient underwent hardware removal at 2 months postoperatively due to painful prominence. There was no significant difference in re-operation rates between the STCC and MWCC groups (p=1). There were no cases of non-union, malunion or loss of fixation throughout the series. At the final clinical follow-up of 18months, there were no significant differences in KSS, KOOS or Böstman scores between the groups. CONCLUSION: No significant differences were identified when comparing the clinical outcomes of fixation of AO/OTA 34C1/2 fractures with suture tape or metallic cerclage fixation concerning re-operation rates, union rates, loss of fixation and functional outcome measures. These results cannot be extrapolated to more complex injury patterns or surgical techniques in which prominence of implanted material is more likely. LEVEL OF EVIDENCE: III.


Assuntos
Fraturas Ósseas , Traumatismos do Joelho , Humanos , Patela/diagnóstico por imagem , Patela/cirurgia , Patela/lesões , Estudos Retrospectivos , Fixação Interna de Fraturas/métodos , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/cirurgia , Fios Ortopédicos , Suturas , Resultado do Tratamento
9.
Cancers (Basel) ; 13(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062786

RESUMO

Isoform D of type 4 phosphodiesterase (PDE4D) has recently been associated with several human cancer types with the exception of human hepatocellular carcinoma (HCC). Here we explored the role of PDE4D in HCC. We found that PDE4D gene/protein were over-expressed in different samples of human HCCs compared to normal livers. Accordingly, HCC cells showed higher PDE4D activity than non-tumorigenic cells, accompanied by over-expression of the PDE4D isoform. Silencing of PDE4D gene and pharmacological inhibition of protein activity by the specific inhibitor Gebr-7b reduced cell proliferation and increased apoptosis in HCC cells, with a decreased fraction of cells in S phase and a differential modulation of key regulators of cell cycle and apoptosis. PDE4D silencing/inhibition also affected the gene expression of several cancer-related genes, such as the pro-oncogenic insulin growth factor (IGF2), which is down-regulated. Finally, gene expression data, available in the CancerLivER data base, confirm that PDE4D over-expression in human HCCs correlated with an increased expression of IGF2, suggesting a new possible molecular network that requires further investigations. In conclusion, intracellular depletion/inhibition of PDE4D prevents the growth of HCC cells, displaying anti-oncogenic effects. PDE4D may thus represent a new biomarker for diagnosis and a potential adjuvant target for HCC therapy.

10.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807511

RESUMO

3'-5' cyclic nucleotide phosphodiesterases (PDEs) are a large family of enzymes playing a fundamental role in the control of intracellular levels of cAMP and cGMP. Emerging evidence suggested an important role of phosphodiesterases in heart formation, but little is known about the expression of phosphodiesterases during cardiac development. In the present study, the pattern of expression and enzymatic activity of phosphodiesterases was investigated at different stages of heart formation. C57BL/6 mice were mated and embryos were collected from 14.5 to 18.5 days of development. Data obtained by qRT-PCR and Western blot analysis showed that seven different isoforms are expressed during heart development, and PDE1C, PDE2A, PDE4D, PDE5A and PDE8A are modulated from E14.5 to E18.5. In heart homogenates, the total cAMP and cGMP hydrolytic activity is constant at the evaluated times, and PDE4 accounts for the majority of the cAMP hydrolyzing ability and PDE2A accounts for cGMP hydrolysis. This study showed that a subset of PDEs is expressed in developing mice heart and some of them are modulated to maintain constant nucleotide phosphodiesterase activity in embryonic and fetal heart.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Coração Fetal/metabolismo , Diester Fosfórico Hidrolases/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Animais , AMP Cíclico , GMP Cíclico/metabolismo , Feminino , Coração Fetal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Fosfodiesterase/farmacologia
11.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799994

RESUMO

We aimed to investigate A2A receptors in the basal ganglia of a DYT1 mouse model of dystonia. A2A was studied in control Tor1a+/+ and Tor1a+/- knock-out mice. A2A expression was assessed by anti-A2A antibody immunofluorescence and Western blotting. The co-localization of A2A was studied in striatal cholinergic interneurons identified by anti-choline-acetyltransferase (ChAT) antibody. A2A mRNA and cyclic adenosine monophosphate (cAMP) contents were also assessed. In Tor1a+/+, Western blotting detected an A2A 45 kDa band, which was stronger in the striatum and the globus pallidus than in the entopeduncular nucleus. Moreover, in Tor1a+/+, immunofluorescence showed A2A roundish aggregates, 0.3-0.4 µm in diameter, denser in the neuropil of the striatum and the globus pallidus than in the entopeduncular nucleus. In Tor1a+/-, A2A Western blotting expression and immunofluorescence aggregates appeared either increased in the striatum and the globus pallidus, or reduced in the entopeduncular nucleus. Moreover, in Tor1a+/-, A2A aggregates appeared increased in number on ChAT positive interneurons compared to Tor1a+/+. Finally, in Tor1a+/-, an increased content of cAMP signal was detected in the striatum, while significant levels of A2A mRNA were neo-expressed in the globus pallidus. In Tor1a+/-, opposite changes of A2A receptors' expression in the striatal-pallidal complex and the entopeduncular nucleus suggest that the pathophysiology of dystonia is critically dependent on a composite functional imbalance of the indirect over the direct pathway in basal ganglia.


Assuntos
Gânglios da Base/metabolismo , Distonia Muscular Deformante/genética , Receptor A2A de Adenosina/metabolismo , Animais , Gânglios da Base/patologia , Neurônios Colinérgicos/metabolismo , Corpo Estriado/metabolismo , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Distonia Muscular Deformante/metabolismo , Distonia Muscular Deformante/patologia , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Chaperonas Moleculares/genética , RNA Mensageiro , Receptor A2A de Adenosina/genética
12.
Arthrosc Tech ; 9(6): e783-e789, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32577352

RESUMO

Transverse patellar fractures are a relatively common injury and typically require surgical fixation. An adequate restoration of patella integrity is essential for proper functioning of the extensor mechanism of the knee and for the prevention of patellofemoral osteoarthritis. Currently, the treatment of transverse fractures of the patellar bone involves several surgical techniques, most of which involve the use of metallic implants. Despite good clinical results following surgery, numerous complications exist, including primarily symptomatic hardware following surgical treatment. The purpose of this article is to describe the technique for treatment of a transverse patellar fracture using a high-resistance tape (FiberTape; Arthrex) and a tensioner (Arthrex) instead of traditional metallic implants.

13.
Int J Burns Trauma ; 10(6): 307-313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33500842

RESUMO

Patellar fractures are relatively uncommon; transverse displaced patellar fractures need surgical treatment, and the most widely used technique requires the use of metallic hardware. Despite good clinical outcomes, there are some possible complications related to the hardware. In this paper, we report a case of a 61 years-old woman that presented in 2001 with a fracture of the right patella that was treated with metallic hardware in another Hospital. After two months, the patient reported an infection of the hardware that became osteomyelitis, requiring several surgeries before achieving complete healing. The infection was eradicated, and the patient reached a good functionality of the right knee after two years from the first surgery. In 2019, she presented in our hospital with a displaced transverse fracture of the left patella. After a careful evaluation of the case, considering all the patient's comorbidities, allergies and the complications related to the previous treatment of the right patellar fracture, we decided to treat this fracture with non-metallic hardware (FiberTape Cerclage, Arthrex Inc., Naples, FL, USA). After surgery, the patient did not report any complications; the fracture was healed at the last x-ray follow-up (6 months), and the patient reached a good functional outcome of the left knee. Based on this case report, in this particular patient, the use of non-metallic hardware for patellar fracture fixation allowed us to obtain good results with no complications. However, this is only a case report, so the reliability of the proposed treatment cannot be directly concluded. Moreover, on the base of this case report, it is not possible to extrapolate the result in the routine treatment of patellar fractures.

14.
Cells ; 8(12)2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775395

RESUMO

Hepatocellular carcinoma (HCC) is a major healthcare problem worldwide, representing one of the leading causes of cancer mortality. Since there are currently no predictive biomarkers for early stage diagnosis, HCC is detected only in advanced stages and most patients die within one year, as radical tumour resection is generally performed late during the disease. The development of alternative therapeutic approaches to HCC remains one of the most challenging areas of cancer. This review focuses on the relevance of cAMP signalling in the development of hepatocellular carcinoma and identifies the modulation of this second messenger as a new strategy for the control of tumour growth. In addition, because the cAMP pathway is controlled by phosphodiesterases (PDEs), targeting these enzymes using PDE inhibitors is becoming an attractive and promising tool for the control of HCC. Among them, based on current preclinical and clinical findings, PDE4-specific inhibitors remarkably demonstrate therapeutic potential in the management of cancer outcomes, especially as adjuvants to standard therapies. However, more preclinical studies are warranted to ascertain their efficacy during the different stages of hepatocyte transformation and in the treatment of established HCC.


Assuntos
Carcinoma Hepatocelular , AMP Cíclico/metabolismo , Neoplasias Hepáticas , Inibidores da Fosfodiesterase 4/uso terapêutico , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo
15.
FEMS Yeast Res ; 19(3)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772891

RESUMO

In higher eukaryotes, cAMP and cGMP are signal molecules of major transduction pathways while phosphodiesterases (PDE) are a superfamily of cAMP/cGMP hydrolysing enzymes, modulatory components of these routes. Saccharomyces cerevisiae harbours two genes for PDE: Pde2 is a high affinity cAMP-hydrolysing enzyme, while Pde1 can hydrolyse both cAMP and cGMP. To gain insight into the metabolic role of cGMP in the physiology of yeast, the murine Pde5a1 gene encoding a specific cGMP-hydrolysing enzyme, was expressed in S. cerevisiae pdeΔ strains. pde1Δ and pde2Δ PDE5A1-transformed strain displayed opposite growth-curve profiles; while PDE5A1 recovered the growth delay of pde1Δ, PDE5A1 reversed the growth profile of pde2Δ to that of the untransformed pde1Δ. Growth test analysis and the use of Adh2 and Adh1 as respiro-fermentative glycolytic flux markers confirmed that PDE5A1 altered the metabolism by acting on Pde1-Pde2/cyclic nucleotides content and also on the TORC1 nutrient-sensing cascade. cGMP is required during the log-phase of cell proliferation to adjust/modulate cAMP levels inside well-defined ranges. A model is presented proposing the role of cGMP in the cAMP/PKA pathway. The expression of the PDE5A1 cassette in other mutant strains might constitute the starting tool to define cGMP metabolic role in yeast nutrient signaling.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Saccharomyces cerevisiae/fisiologia , Animais , Proliferação de Células , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Engenharia Genética , Camundongos , Saccharomyces cerevisiae/genética , Transdução de Sinais
16.
J Pharm Biomed Anal ; 149: 335-342, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29132113

RESUMO

Phosphodiesterases (PDEs) regulate the intracellular levels of cAMP and cGMP. The great clinical success of the PDE5 inhibitors, Sildenafil (Viagra), Vardenafil (Levitra) and Tadalafil (Cialis) has led to an increasing interest for this class of enzymes. Recent studies have shown a correlation between tumor growth and PDE5 overexpression, making PDE5-selective inhibitors promising candidates for cancer treatment. The search for such inhibitors rests today on radioactive assays. In this work, we exploit the conserved catalytic domain of the enzyme and propose a faster and safer method for detecting the binding of ligands and evaluate their affinities. The new approach takes advantage of Förster Resonance Energy Transfer (FRET) between, as the donor, a fluorescein-like diarsenical probe able to covalently bind a tetracysteine motif fused to the recombinant PDE5 catalytic domain and, as the acceptor, a rhodamine probe covalently bound to the pseudosubstrate cGMPS. The FRET efficiency decreases when a competitive ligand binds the PDE5 catalytic site and displaces the cGMPS-rhodamine conjugate. We have structurally investigated the PDE5/cGMPS-rhodamine complex by molecular modelling and have used the FRET signal to quantitatively characterize its binding equilibrium. Competitive displacement experiments were carried out with tadalafil and cGMPS. An adaptation of the competitive-displacement equilibrium model yielded the affinities for PDE5 of the incoming ligands, nano- and micromolar, respectively.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Inibidores da Fosfodiesterase 5/farmacologia , Domínio Catalítico , Química Farmacêutica/métodos , GMP Cíclico/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Corantes Fluorescentes/química , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Ligantes , Modelos Químicos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodaminas/química , Tadalafila/farmacologia
17.
J Cell Physiol ; 233(1): 325-337, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28247930

RESUMO

Phosphodiesterase 5A (PDE5A) specifically degrades the ubiquitous second messenger cGMP and experimental and clinical data highlight its important role in cardiac diseases. To address PDE5A role in cardiac physiology, three splice variants of the PDE5A were cloned for the first time from mouse cDNA library (mPde5a1, mPde5a2, and mPde5a3). The predicted amino acidic sequences of the three murine isoforms are different in the N-terminal regulatory domain. mPDE5A isoforms were transfected in HEK293T cells and they showed high affinity for cGMP and similar sensitivity to sildenafil inhibition. RT-PCR analysis showed that mPde5a1, mPde5a2, and mPde5a3 had differential tissue distribution. In the adult heart, mPde5a1 and mPde5a2 were expressed at different levels whereas mPde5a3 was undetectable. Overexpression of mPDE5As induced an increase of HL-1 number cells which progress into cell cycle. mPDE5A1 and mPDE5A3 overexpression increased the number of polyploid and binucleated cells, mPDE5A3 widened HL-1 areas, and modulated hypertrophic markers more efficiently respect to the other mPDE5A isoforms. Moreover, mPDE5A isoforms had differential subcellular localization: mPDE5A1 was mainly localized in the cytoplasm, mPDE5A2 and mPDE5A3 were also nuclear localized. These results demonstrate for the first time the existence of three PDE5A isoforms in mouse and highlight their potential role in the induction of hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Miócitos Cardíacos/enzimologia , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Ciclo Celular , Núcleo Celular/enzimologia , Núcleo Celular/patologia , Proliferação de Células , Clonagem Molecular , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Citosol/enzimologia , Feminino , Citometria de Fluxo , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Células NIH 3T3 , Inibidores da Fosfodiesterase 5/farmacologia , Poliploidia , Isoformas de Proteínas , Transdução de Sinais , Citrato de Sildenafila/farmacologia , Transfecção
18.
J Neurosci ; 37(8): 2112-2124, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28115486

RESUMO

We report that changes of phosphodiesterase-10A (PDE10A) can map widespread functional imbalance of basal ganglia circuits in a mouse model of DYT1 dystonia overexpressing mutant torsinA. PDE10A is a key enzyme in the catabolism of second messenger cAMP and cGMP, whose synthesis is stimulated by D1 receptors and inhibited by D2 receptors preferentially expressed in striatoentopeducuncular/substantia nigra or striatopallidal pathways, respectively. PDE10A was studied in control mice (NT) and in mice carrying human wild-type torsinA (hWT) or mutant torsinA (hMT). Quantitative analysis of PDE10A expression was assessed in different brain areas by rabbit anti-PDE10A antibody immunohistochemistry and Western blotting. PDE10A-dependent cAMP hydrolyzing activity and PDE10A mRNA were also assessed. Striatopallidal neurons were identified by rabbit anti-enkephalin antibody.In NT mice, PDE10A is equally expressed in medium spiny striatal neurons and in their projections to entopeduncular nucleus/substantia nigra and to external globus pallidus. In hMT mice, PDE10A content selectively increases in enkephalin-positive striatal neuronal bodies; moreover, PDE10A expression and activity in hMT mice, compared with NT mice, significantly increase in globus pallidus but decrease in entopeduncular nucleus/substantia nigra. Similar changes of PDE10A occur in hWT mice, but such changes are not always significant. However, PDE10A mRNA expression appears comparable among NT, hWT, and hMT mice.In DYT1 transgenic mice, the inverse changes of PDE10A in striatoentopeduncular and striatopallidal projections might result over time in an imbalance between direct and indirect pathways for properly focusing movement. The decrease of PDE10A in the striatoentopeduncular/nigral projections might lead to increased intensity and duration of D1-stimulated cAMP/cGMP signaling; conversely, the increase of PDE10A in the striatopallidal projections might lead to increased intensity and duration of D2-inhibited cAMP/cGMP signaling.SIGNIFICANCE STATEMENT In DYT1 transgenic mouse model of dystonia, PDE10A, a key enzyme in cAMP and cGMP catabolism, is downregulated in striatal projections to entopeduncular nucleus/substantia nigra, preferentially expressing D1 receptors that stimulate cAMP/cGMP synthesis. Conversely, in DYT1 mice, PDE10A is upregulated in striatal projections to globus pallidus, preferentially expressing D2 receptors that inhibit cAMP/cGMP synthesis. The inverse changes to PDE10A in striatoentopeduncular/substantia nigra and striatopallidal pathways might tightly interact downstream to dopamine receptors, likely resulting over time to increased intensity and duration respectively of D1-stimulated and D2-inhibited cAMP/cGMP signals. Therefore, PDE10A changes in the DYT1 model of dystonia can upset the functional balance of basal ganglia circuits, affecting direct and indirect pathways simultaneously.


Assuntos
Corpo Estriado/metabolismo , Distonia , Regulação Enzimológica da Expressão Gênica/genética , Chaperonas Moleculares/genética , Diester Fosfórico Hidrolases/metabolismo , Substância Negra/metabolismo , Animais , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Distonia/genética , Distonia/metabolismo , Distonia/patologia , Encefalinas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Papaverina/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/genética , RNA Mensageiro/metabolismo
19.
J Cell Biochem ; 118(6): 1401-1411, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27859531

RESUMO

Type 4 cyclic nucleotide phosphodiesterases (PDE4) are major members of a superfamily of enzymes (PDE) involved in modulation of intracellular signaling mediated by cAMP. Broadly expressed in most human tissues and present in large amounts in the liver, PDEs have in the last decade been key therapeutic targets for several inflammatory diseases. Recently, a significant body of work has underscored their involvement in different kinds of cancer, but with no attention paid to liver cancer. The present study investigated the effects of two PDE4 inhibitors, rolipram and DC-TA-46, on the growth of human hepatoma HepG2 cells. Treatment with these inhibitors caused a marked increase of intracellular cAMP level and a dose- and time-dependent effect on cell growth. The concentrations of inhibitors that halved cell proliferation to about 50% were used for cell cycle experiments. Rolipram (10 µM) and DC-TA-46 (0.5 µM) produced a decrease of cyclin expression, in particular of cyclin A, as well as an increase in p21, p27 and p53, as evaluated by Western blot analysis. Changes in the intracellular localization of cyclin D1 were also observed after treatments. In addition, both inhibitors caused apoptosis, as demonstrated by an Annexin-V cytofluorimetric assay and analysis of caspase-3/7 activity. Results demonstrated that treatment with PDE4 inhibitors affected HepG2 cell cycle and survival, suggesting that they might be useful as potential adjuvant, chemotherapeutic or chemopreventive agents in hepatocellular carcinoma. J. Cell. Biochem. 118: 1401-1411, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , AMP Cíclico/metabolismo , Neoplasias Hepáticas/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Piperazinas/farmacologia , Pteridinas/farmacologia , Rolipram/farmacologia
20.
Behav Brain Res ; 278: 129-36, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25281278

RESUMO

In this work, we report the effect of post-training intraperitoneal administration of zaprinast on rat memory retention in the Morris water maze task that revealed a significant memory impairment at the intermediate dose of 10mg/kg. Zaprinast is capable of inhibiting both striatal and hippocampal PDE activity but to a different extent which is probably due to the different PDE isoforms expressed in these areas. To assess the possible involvement of cyclic nucleotides in rat memory impairment, we compared the effects obtained 30 min after the zaprinast injection with respect to 24h after injection by measuring both cyclic nucleotide levels and PDE activity. As expected, 30 min after the zaprinast administration, we observed an increase of cyclic nucleotides, which returned to a basal level within 24h, with the exception of the hippocampal cGMP which was significantly decreased at the dose of 10mg/kg of zaprinast. This increase in the hippocampal region is the result of a cGMP-specific PDE5 induction, confirmed by sildenafil inhibition, in agreement with literature data that demonstrate transcriptional regulation of PDE5 by cAMP/cGMP intracellular levels. Our results highlight the possible rebound effect of PDE inhibitors.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Hipocampo/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/patologia , Inibidores de Fosfodiesterase/toxicidade , Purinonas/toxicidade , Análise de Variância , Animais , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Reação de Fuga/efeitos dos fármacos , Hipocampo/metabolismo , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA