Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985284

RESUMO

Acanthamoeba castellanii genotype T4 is a clinically significant free-living amoeba that causes granulomatous amoebic encephalitis and amoebic keratitis in human beings. During the initial stages of infection, trophozoites interact with various host immune responses, such as lactoferrin (Lf), in the corneal epithelium, nasal mucosa, and blood. Lf plays an important role in the elimination of pathogenic microorganisms, and evasion of the innate immune response is crucial in the colonization process. In this study, we describe the resistance of A. castellanii to the microbicidal effect of bovine apo-lactoferrin (apo-bLf) at different concentrations (25, 50, 100, and 500 µM). Acanthamoeba castellanii trophozoites incubated with apo-bLf at 500 µM for 12 h maintained 98% viability. Interestingly, despite this lack of effect on viability, our results showed that the apo-bLf inhibited the cytopathic effect of A. castellanii in MDCK cells culture, and analysis of amoebic proteases by zymography showed significant inhibition of cysteine and serine proteases by interaction with the apo-bLf. From these results, we conclude that bovine apo-Lf influences the activity of A. castellanii secretion proteases, which in turn decreases amoebic cytopathic activity.

2.
J Am Chem Soc ; 143(20): 7655-7670, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988982

RESUMO

Aptamers, synthetic single-strand oligonucleotides that are similar in function to antibodies, are promising as therapeutics because of their minimal side effects. However, the stability and bioavailability of the aptamers pose a challenge. We developed aptamers converted from RNA aptamer to modified DNA aptamers that target phospho-AXL with improved stability and bioavailability. On the basis of the comparative analysis of a library of 17 converted modified DNA aptamers, we selected aptamer candidates, GLB-G25 and GLB-A04, that exhibited the highest bioavailability, stability, and robust antitumor effect in in vitro experiments. Backbone modifications such as thiophosphate or dithiophosphate and a covalent modification of the 5'-end of the aptamer with polyethylene glycol optimized the pharmacokinetic properties, improved the stability of the aptamers in vivo by reducing nuclease hydrolysis and renal clearance, and achieved high and sustained inhibition of AXL at a very low dose. Treatment with these modified aptamers in ovarian cancer orthotopic mouse models significantly reduced tumor growth and the number of metastases. This effective silencing of the phospho-AXL target thus demonstrated that aptamer specificity and bioavailability can be improved by the chemical modification of existing aptamers for phospho-AXL. These results lay the foundation for the translation of these aptamer candidates and companion biomarkers to the clinic.


Assuntos
Anticorpos/imunologia , Aptâmeros de Nucleotídeos/imunologia , Neoplasias/imunologia , Anticorpos/química , Aptâmeros de Nucleotídeos/química , Humanos , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA