Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 36(12): 1157-63, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19473191

RESUMO

1. Intrauterine malnutrition has been linked to the development of adult cardiovascular and renal diseases, which are related to altered Na(+) balance. Here we investigated whether maternal malnutrition increases placental oxidative stress with subsequent impact on renal ATP-dependent Na(+) transporters in the offspring. 2. Maternal malnutrition was induced in rats during pregnancy by using a basic regional diet available in north-eastern Brazil. Placental oxidative stress was evaluated by measuring thiobarbituric acid-reactive substances, which were 35-40% higher in malnourished dams (MalN). Na(+) pumps were evaluated in control and prenatally malnourished rats (at 25 and 90 days of age). 3. Identical Na(+)/K(+)-ATPase activity was found in both groups at 25 days (approximately 150 nmol P(i)/mg per min). However, although Na(+)/K(+)-ATPase increased by 40% with growth in control rats, it remained constant in pups from MalN. 4. In juvenile rats, the activity of the ouabain-insensitive Na(+)-ATPase was higher in MalN than in controls (70 vs 25 nmol P(i)/mg per min). Nevertheless, activity did not increase with kidney and body growth: at 90 days, it was 50% lower in MalN than in controls. The maximal stimulation of the Na(+)-ATPase by angiotensin (Ang) II was 35% lower in MalN than in control rats and was attained only with a much higher concentration of the peptide (10(-10) mol/L) than in controls (10(-14) mol/L). 5. Protein kinase C activity, which mediates the effects of AngII on Na(+)-ATPase was only one-third of normal values in the MalN group. 6. These results indicate that placental oxidative stress may contribute to fetal undernutrition, which leads to later disturbances in Na(+) pumps from proximal tubule cells.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Túbulos Renais Proximais/metabolismo , Desnutrição/metabolismo , Troca Materno-Fetal , Estresse Oxidativo , Placenta/metabolismo , Complicações na Gravidez/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Angiotensina II/farmacologia , Animais , Feminino , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/crescimento & desenvolvimento , Masculino , Gravidez , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA