Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Methods Mol Biol ; 2816: 87-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977591

RESUMO

Laparotomy (EL) is one of the most common procedures performed among surgical specialties. Previous research demonstrates that surgery is associated with an increased inflammatory response. Low psoas muscle mass and quality markers are associated with increased mortality rates after emergency laparotomy. Analysis of lipid mediators in serum and muscle by using liquid chromatography-mass spectrometry (LC-MS)-based lipidomics has proven to be a sensitive and precise technique. In this chapter, we describe an LC-MS/MS protocol for the profiling and quantification of signaling lipids formed from Eicosapentaenoic Acid (EPA) and Eicosatetranoic acid (ETA) by 5, 12, or 15 lipoxynases. This protocol has been developed for and validated in serum and muscle samples in a mouse model of surgical stress caused by laparotomy.


Assuntos
Envelhecimento , Laparotomia , Lipidômica , Espectrometria de Massas em Tandem , Animais , Camundongos , Lipidômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Envelhecimento/metabolismo , Estresse Fisiológico , Modelos Animais de Doenças , Lipídeos/análise , Lipídeos/sangue , Metabolismo dos Lipídeos
2.
Front Cell Neurosci ; 17: 1163436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416508

RESUMO

Membrane channels such as those formed by connexins (Cx) and P2X7 receptors (P2X7R) are permeable to calcium ions and other small molecules such as adenosine triphosphate (ATP) and glutamate. Release of ATP and glutamate through these channels is a key mechanism driving tissue response to traumas such as spinal cord injury (SCI). Boldine, an alkaloid isolated from the Chilean boldo tree, blocks both Cx and Panx1 hemichannels (HCs). To test if boldine could improve function after SCI, boldine or vehicle was administered to treat mice with a moderate severity contusion-induced SCI. Boldine led to greater spared white matter and increased locomotor function as determined by the Basso Mouse Scale and horizontal ladder rung walk tests. Boldine treatment reduced immunostaining for markers of activated microglia (Iba1) and astrocytic (GFAP) markers while increasing that for axon growth and neuroplasticity (GAP-43). Cell culture studies demonstrated that boldine blocked glial HC, specifically Cx26 and Cx30, in cultured astrocytes and blocked calcium entry through activated P2X7R. RT-qPCR studies showed that boldine treatment reduced expression of the chemokine Ccl2, cytokine IL-6 and microglial gene CD68, while increasing expression of the neurotransmission genes Snap25 and Grin2b, and Gap-43. Bulk RNA sequencing revealed that boldine modulated a large number of genes involved in neurotransmission in spinal cord tissue just caudal from the lesion epicenter at 14 days after SCI. Numbers of genes regulated by boldine was much lower at 28 days after injury. These results indicate that boldine treatment ameliorates injury and spares tissue to increase locomotor function.

3.
FASEB J ; 37(6): e22984, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219516

RESUMO

Spinal cord injury (SCI) causes severe and resistant sublesional disuse bone loss. Abaloparatide, a modified parathyroid hormone related peptide, is an FDA approved drug for treatment of severe osteoporosis with potent anabolic activity. The effects of abaloparatide on SCI-induced bone loss remain undefined. Thus, female mice underwent sham or severe contusion thoracic SCI causing hindlimb paralysis. Mice then received subcutaneous injection of vehicle or 20 µg/kg/day abaloparatide for 35 days. Micro-computed tomography (micro-CT) analysis of the distal and midshaft femoral regions of the SCI-vehicle mice revealed reduced trabecular fractional bone volume (56%), thickness (75%), and cortical thickness (80%) compared to sham-vehicle controls. Treatment with abaloparatide did not prevent SCI-induced changes in trabecular or cortical bone. However, histomorphometry evaluation of the SCI-abaloparatide mice demonstrated that abaloparatide treatment increased osteoblast (241%) and osteoclast (247%) numbers and the mineral apposition rate (131%) compared to SCI-vehicle animals. In another independent experiment, treatment with 80 µg/kg/day abaloparatide significantly attenuated SCI-induced loss in cortical bone thickness (93%) when compared to SCI-vehicle mice (79%) but did not prevent SCI-induced trabecular bone loss or elevation in cortical porosity. Biochemical analysis of the bone marrow supernatants of the femurs showed that SCI-abaloparatide animals had 2.3-fold increase in procollagen type I N-terminal propeptide, a bone formation marker than SCI-vehicle animals. SCI groups had 70% higher levels of cross-linked C-telopeptide of type I collagen, a bone resorption marker, than sham-vehicle mice. These findings suggest that abaloparatide protects the cortical bone against the deleterious effects of SCI by promoting bone formation.


Assuntos
Doenças Ósseas Metabólicas , Traumatismos da Medula Espinal , Feminino , Animais , Camundongos , Proteína Relacionada ao Hormônio Paratireóideo , Microtomografia por Raio-X
4.
Eur J Appl Physiol ; 123(3): 479-493, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36305973

RESUMO

The purpose of the study was to identify potential predictors of muscle hypertrophy responsiveness following neuromuscular electrical stimulation resistance training (NMES-RT) in persons with chronic spinal cord injury (SCI). Data for twenty individuals with motor complete SCI who completed twice weekly NMES-RT lasting 12-16 weeks as part of their participation in one of two separate clinical trials were pooled and retrospectively analyzed. Magnetic resonance imaging (MRI) was used to measure muscle cross-sectional area (CSA) of the whole thigh and knee extensor muscle before and after NMES-RT. Muscle biopsies and fasting biomarkers were also measured. Following the completion of the respective NMES-RT trials, participants were classified into either high-responders (n = 8; muscle CSA > 20%) or low-responders (n = 12; muscle CSA < 20%) based on whole thigh muscle CSA hypertrophy. Whole thigh muscle and knee extensors CSAs were significantly greater (P < 0.0001) in high-responders (29 ± 7% and 47 ± 15%, respectively) compared to low-responders (12 ± 3% and 19 ± 6%, respectively). There were no differences in total caloric intake or macronutrient intake between groups. Extensor spasticity was lower in the high-responders compared to the low-responders as was the dosage of baclofen. Prior to the intervention, the high-responders had greater body mass compared to the low-responders with SCI (87.8 ± 13.7 vs. 70.4 ± 15.8 kg; P = 0.012), body mass index (BMI: 27.6 ± 2.7 vs. 22.9 ± 6.0 kg/m2; P = 0.04), as well as greater percentage in whole body and regional fat mass (P < 0.05). Furthermore, high-responders had a 69% greater increase (P = 0.086) in total Akt protein expression than low-responders. High-responders also exhibited reduced circulating IGF-1 with a concomitant increase in IGFBP-3. Exploratory analyses revealed upregulation of mRNAs for muscle hypertrophy markers [IRS-1, Akt, mTOR] and downregulation of protein degradation markers [myostatin, MurF-1, and PDK4] in the high-responders compared to low-responders. The findings indicate that body composition, spasticity, baclofen usage, and multiple signaling pathways (anabolic and catabolic) are involved in the differential muscle hypertrophy response to NMES-RT in persons with chronic SCI.


Assuntos
Terapia por Estimulação Elétrica , Treinamento Resistido , Traumatismos da Medula Espinal , Humanos , Baclofeno/metabolismo , Treinamento Resistido/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estudos Retrospectivos , Músculo Esquelético/fisiologia , Espasticidade Muscular , Traumatismos da Medula Espinal/metabolismo , Hipertrofia/patologia , Terapia por Estimulação Elétrica/métodos
5.
BMJ Open ; 12(10): e064748, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198461

RESUMO

INTRODUCTION: Long pulse width stimulation (LPWS; 120-150 ms) has the potential to stimulate denervated muscles and to restore muscle size in denervated people with spinal cord injury (SCI). We will determine if testosterone treatment (TT)+LPWS would increase skeletal muscle size, leg lean mass and improve overall metabolic health in persons with SCI with denervation. We hypothesise that the 1-year TT+LPWS will upregulate protein synthesis pathways, downregulate protein degradation pathways and increase overall mitochondrial health. METHODS AND ANALYSIS: Twenty-four male participants (aged 18-70 years with chronic SCI) with denervation of both knee extensor muscles and tolerance to the LPWS paradigm will be randomised into either TT+neuromuscular electrical stimulation via telehealth or TT+LPWS. The training sessions will be twice weekly for 1 year. Measurements will be conducted 1 week prior training (baseline; week 0), 6 months following training (postintervention 1) and 1 week after the end of 1 year of training (postintervention 2). Measurements will include body composition assessment using anthropometry, dual X-ray absorptiometry and MRI to measure size of different muscle groups. Metabolic profile will include measuring of basal metabolic rate, followed by blood drawn to measure fasting biomarkers similar to hemoglobin A1c, lipid panels, C reactive protein, interleukin-6 and free fatty acids and then intravenous glucose tolerance test to test for insulin sensitivity and glucose effectiveness. Finally, muscle biopsy will be captured to measure protein expression and intracellular signalling; and mitochondrial electron transport chain function. The participants will fill out 3 days dietary record to monitor their energy intake on a weekly basis. ETHICS AND DISSEMINATION: The study was approved by Institutional Review Board of the McGuire Research Institute (ID # 02189). Dissemination plans will include the Veteran Health Administration and its practitioners, the national SCI/D services office, the general healthcare community and the veteran population, as well as the entire SCI community via submitting quarterly letters or peer-review articles. TRIAL REGISTRATION NUMBER: NCT03345576.


Assuntos
Traumatismos da Medula Espinal , Testosterona , Biomarcadores , Proteína C-Reativa/metabolismo , Ácidos Graxos não Esterificados , Glucose/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Músculo Esquelético , Ensaios Clínicos Controlados Aleatórios como Assunto , Traumatismos da Medula Espinal/terapia
6.
Ann N Y Acad Sci ; 1517(1): 203-212, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36072988

RESUMO

Citrate is an indispensable component of bone. Reduced levels of citrate in bone and serum are reported in the elderly and in osteoporosis patients. Myostatin (Mstn) is implicated in skeletal homeostasis, but its effects on osteogenesis remain incompletely understood. Nox4 has critical roles in bone homeostasis. TGF-ß/Mstn-associated Smad2/3 signaling has been linked to Nox4 expression. Insulin-like growth factor (IGF-1) has been shown to counteract many regulatory effects of Mstn. However, the crosstalk among Mstn, IGF-1, and Nox4 is not well understood; the interactive effects of those factors on citrate secretion, osteogenic differentiation, and bone remodeling remain unclear. In this study, we demonstrated that osteogenic differentiation induced an IGF-1-dependent upregulation of citrate secretion that was suppressed by Mstn. Inhibition of Nox4 prevented Mstn-induced reduction of citrate secretion. In addition, Mstn reduced bone nodule formation; these changes were prevented by Nox4 inhibition. Moreover, Mstn increased the ratio of RANKL to OPG mRNAs to favor osteoclast activation. These results indicate that Mstn negatively regulates osteogenesis by increasing levels of Nox4, which reduced IGF-1 expression, citrate secretion, and bone mineralization while also altering the RANKL to OPG ratio. These findings provide new and highly relevant insights into the osseous effects of myostatin.


Assuntos
Células-Tronco Mesenquimais , Miostatina , Camundongos , Animais , Miostatina/metabolismo , Miostatina/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Osteogênese , NADP/metabolismo , Células-Tronco Mesenquimais/metabolismo , Citratos/metabolismo , Oxirredutases/metabolismo , Músculo Esquelético/metabolismo
7.
Exp Physiol ; 107(8): 800-806, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35562322

RESUMO

NEW FINDINGS: What is the central question of this study? Do Notch, Numb and Numb-like expression change in human skeletal muscle after exercise-induced muscle damage? What are the main finding and its importance? Notch gene expression trends toward an increase in response to an acute bout of exercise-induced muscle damage, while Numb and Numb-like expression does not change. These results suggest that human skeletal muscle response to exercise-induced muscle damage is dynamic and may differ from Drosophila and rodent models. Furthermore, the timing of muscle biopsies, training status and muscle damage protocols should be considered. ABSTRACT: This investigation examined changes in the gene and protein expression of Notch, Numb and Numb-like (Numbl) in human skeletal muscle after an acute bout of eccentric exercise-induced muscle damage. Twelve recreationally active male subjects participated in this study. These individuals completed seven sets of 10 repetitions of eccentric leg extension at 120% of one-repetition max with 2 min of rest period between sets. Four muscle biopsies of the vastus lateralis were collected: before exercise (Pre), and 3 h, 2 days and 5 days post-muscle damage. Biopsy samples were used to probe Notch, Numb and Numbl utilizing western blot and RT-qPCR techniques. The results were analysed using a one-way repeated-measures ANOVA. Notch1 mRNA expression trended toward a significant increase from Pre to 2 days post-muscle damage from baseline measures (P = 0.087), while Numb (P = 0.804) and Numbl (P = 0.480) expression was unaltered post-muscle damage. There were no significant differences in protein expression post-muscle damage for any of the proteins. These results suggest that exercise-induced muscle damage, via eccentric exercise, slightly elevates Notch1 mRNA expression.


Assuntos
Exercício Físico , Proteínas de Membrana , Proteínas do Tecido Nervoso , Receptor Notch1 , Exercício Físico/fisiologia , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Músculo Quadríceps/fisiologia , RNA Mensageiro/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Descanso
8.
J Cachexia Sarcopenia Muscle ; 13(1): 454-466, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35001540

RESUMO

BACKGROUND: The role of Numb, a protein that is important for cell fate and development and that, in human muscle, is expressed at reduced levels with advanced age, was investigated; adult mice skeletal muscle and its localization and function within myofibres were determined. METHODS: Numb expression was evaluated by western blot. Numb localization was determined by confocal microscopy. The effects of conditional knock out (cKO) of Numb and the closely related gene Numb-like in skeletal muscle fibres were evaluated by in situ physiology, transmission and focused ion beam scanning electron microscopy, three-dimensional reconstruction of mitochondria, lipidomics, and bulk RNA sequencing. Additional studies using primary mouse myotubes investigated the effects of Numb knockdown on cell fusion, mitochondrial function, and calcium transients. RESULTS: Numb protein expression was reduced by ~70% (P < 0.01) at 24 as compared with 3 months of age in gastrocnemius and tibialis anterior muscle. Numb was localized within muscle fibres as bands traversing fibres at regularly spaced intervals in close proximity to dihydropyridine receptors. The cKO of Numb and Numb-like reduced specific tetanic force by 36% (P < 0.01), altered mitochondrial spatial relationships to sarcomeric structures, increased Z-line spacing by 30% (P < 0.0001), perturbed sarcoplasmic reticulum organization and reduced mitochondrial volume by over 80% (P < 0.01). Only six genes were differentially expressed in cKO mice: Itga4, Sema7a, Irgm2, Vezf1, Mib1, and Tmem132a. Several lipid mediators derived from polyunsaturated fatty acids through lipoxygenases were up-regulated in Numb cKO skeletal muscle: 12-HEPE was increased by ~250% (P < 0.05) and 17,18-EpETE by ~240% (P < 0.05). In mouse primary myotubes, Numb knockdown reduced cell fusion (~20%, P < 0.01) and delayed the caffeine-induced rise in cytosolic calcium concentrations by more than 100% (P < 0.01). CONCLUSIONS: These findings implicate Numb as a critical factor in skeletal muscle structure and function and suggest that Numb is critical for calcium release. We therefore speculate that Numb plays critical roles in excitation-contraction coupling, one of the putative targets of aged skeletal muscles. These findings provide new insights into the molecular underpinnings of the loss of muscle function observed with sarcopenia.


Assuntos
Proteínas de Membrana , Músculo Esquelético , Proteínas do Tecido Nervoso , Retículo Sarcoplasmático , Animais , Cálcio/metabolismo , Acoplamento Excitação-Contração , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Retículo Sarcoplasmático/metabolismo
9.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34791098

RESUMO

Bone loss is one of the most common complications of immobilization after spinal cord injury (SCI). Whether transforming growth factor (TGF)-ß signaling plays a role in SCI-induced disuse bone loss has not been determined. Thus, 16-week-old male mice underwent sham or spinal cord contusion injury to cause complete hindlimb paralysis. Five days later, 10 mg/kg/day control (IgG) or anti-TGF-ß1,2,3 neutralizing antibody (1D11) was administered twice weekly for 4 weeks. Femurs were examined by micro-computed tomography (micro-CT) scanning and histology. Bone marrow (BM) supernatants were analyzed by enzyme-linked immunosorbent assay for levels of procollagen type 1 intact N-terminal propeptide (P1NP), tartrate-resistant acid phosphatase (TRAcP-5b), receptor activator of nuclear factor-kappa B ligand (RANKL), osteoprotegerin (OPG), and prostaglandin E2 (PGE2). Distal femoral micro-CT analysis showed that SCI-1D11 mice had significantly (P < .05) attenuated loss of trabecular fractional bone volume (123% SCI-1D11 vs 69% SCI-IgG), thickness (98% vs 81%), and connectivity (112% vs 69%) and improved the structure model index (2.1 vs 2.7). Histomorphometry analysis revealed that osteoclast numbers were lower in the SCI-IgG mice than in sham-IgG control. Biochemically, SCI-IgG mice had higher levels of P1NP and PGE2 but similar TRAcP-5b and RANKL/OPG ratio to the sham-IgG group. The SCI-1D11 group exhibited higher levels of P1NP but similar TRAcP-5b, RANKL/OPG ratio, and PGE2 to the sham-1D11 group. Furthermore, 1D11 treatment prevented SCI-induced hyperphosphorylation of tau protein in osteocytes, an event that destabilizes the cytoskeleton. Together, inhibition of TGF-ß signaling after SCI protects trabecular bone integrity, likely by balancing bone remodeling, inhibiting PGE2 elevation, and preserving the osteocyte cytoskeleton.


Assuntos
Osso e Ossos/metabolismo , Osso Esponjoso/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Animais , Anticorpos Neutralizantes/química , Doenças Ósseas Metabólicas/metabolismo , Medula Óssea/metabolismo , Remodelação Óssea , Reabsorção Óssea/metabolismo , Citoesqueleto/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteócitos/metabolismo , Osteoporose , Osteoprotegerina/metabolismo , Peptídeos/química , Fosforilação , Ligante RANK/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Microtomografia por Raio-X
10.
Front Endocrinol (Lausanne) ; 12: 668984, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046014

RESUMO

Spinal cord injury (SCI) results in dysregulation of carbohydrate and lipid metabolism; the underlying cellular and physiological mechanisms remain unclear. Fibroblast growth factor 21 (FGF21) is a circulating protein primarily secreted by the liver that lowers blood glucose levels, corrects abnormal lipid profiles, and mitigates non-alcoholic fatty liver disease. FGF21 acts via activating FGF receptor 1 and ß-klotho in adipose tissue and stimulating release of adiponectin from adipose tissue which in turn signals in the liver and skeletal muscle. We examined FGF21/adiponectin signaling after spinal cord transection in mice fed a high fat diet (HFD) or a standard mouse chow. Tissues were collected at 84 days after spinal cord transection or a sham SCI surgery. SCI reduced serum FGF21 levels and hepatic FGF21 expression, as well as ß-klotho and FGF receptor-1 (FGFR1) mRNA expression in adipose tissue. SCI also reduced serum levels and adipose tissue mRNA expression of adiponectin and leptin, two major adipokines. In addition, SCI suppressed hepatic type 2 adiponectin receptor (AdipoR2) mRNA expression and PPARα activation in the liver. Post-SCI mice fed a HFD had further suppression of serum FGF21 levels and hepatic FGF21 expression. Elevated serum free fatty acid (FFA) levels after HFD feeding were observed in post-SCI mice but not in sham-mice, suggesting defective FFA uptake after SCI. Moreover, after SCI several genes that are implicated in insulin's action had reduced expression in tissues of interest. These findings suggest that downregulated FGF21/adiponectin signaling and impaired responsiveness of adipose tissues to FGF21 may, at least in part, contribute to the overall picture of metabolic dysfunction after SCI.


Assuntos
Tecido Adiposo/patologia , Fatores de Crescimento de Fibroblastos/sangue , Inflamação/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Traumatismos da Medula Espinal/complicações , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Inflamação/sangue , Inflamação/etiologia , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Transdução de Sinais
11.
J Appl Physiol (1985) ; 131(1): 265-276, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33982590

RESUMO

The purpose of the study was to determine whether neuromuscular electrical stimulation resistance training (NMES-RT)-evoked muscle hypertrophy is accompanied by increased V̇o2 peak, ventilatory efficiency, and mitochondrial respiration in individuals with chronic spinal cord injury (SCI). Thirty-three men and women with chronic, predominantly traumatic SCI were randomized to either NMES-RT (n = 20) or passive movement training (PMT; n = 13). Functional electrical stimulation-lower extremity cycling (FES-LEC) was used to test the leg V̇o2 peak, V̇E/V̇co2 ratio, and substrate utilization pre- and postintervention. Magnetic resonance imaging was used to measure muscle cross-sectional area (CSA). Finally, muscle biopsy was performed to measure mitochondrial complexes and respiration. The NMES-RT group showed a significant increase in postintervention V̇o2 peak compared with baseline (ΔV̇o2 = 14%, P < 0.01) with no changes in the PMT group (ΔV̇o2 = 1.6%, P = 0.47). Similarly, thigh (ΔCSAthigh = 19%) and knee extensor (ΔCSAknee = 30.4%, P < 0.01) CSAs increased following NMES-RT but not after PMT. The changes in thigh and knee extensor muscle CSAs were positively related with the change in V̇o2 peak. Neither NMES-RT nor PMT changed mitochondrial complex tissue levels; however, changes in peak V̇o2 were related to complex I. In conclusion, in persons with SCI, NMES-RT-induced skeletal muscle hypertrophy was accompanied by increased peak V̇o2 consumption which may partially be explained by enhanced activity of mitochondrial complex I.NEW & NOTEWORTHY Leg oxygen uptake (V̇o2) and ventilatory efficiency (V̇E/V̇co2 ratio) were measured during functional electrical stimulation cycling testing following 12-16 wk of either electrically evoked resistance training or passive movement training, and the respiration of mitochondrial complexes. Resistance training increased thigh muscle area and leg V̇o2 peak but decreased V̇E/V̇co2 ratio without changes in mitochondrial complex levels. Leg V̇o2 peak was associated with muscle hypertrophy and mitochondrial respiration of complex I following training.


Assuntos
Terapia por Estimulação Elétrica , Treinamento Resistido , Traumatismos da Medula Espinal , Estimulação Elétrica , Feminino , Humanos , Masculino , Músculo Esquelético , Oxigênio , Traumatismos da Medula Espinal/terapia
12.
Physiol Rep ; 9(4): e14751, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33611851

RESUMO

Spinal cord injury (SCI) leads to rapid muscle atrophy due to paralysis/paresis and subsequent disuse. SS-31 is a mitochondrial-targeting peptide that has shown efficacy in protecting skeletal muscle mass and function in non-SCI models of muscle wasting. We aimed to determine if SS-31 could prevent muscle loss after SCI. Male C57BL/6 mice aged 9 weeks underwent sham surgery or 50 kdyne contusion SCI and were administered daily injections of vehicle or 5 mg/kg SS-31 for 14 d. Both SCI groups had sustained losses in body mass compared to Sham animals and ~10% reductions in gastrocnemius, plantaris and tibialis anterior muscle mass after SCI with no clear effect of SS-31. Measurements of protein synthesis in the soleus and plantaris were similar among all groups. mRNA expression of atrophy-associated proinflammatory cytokines was also similar among all groups. There was elevation in MYH7 mRNA and a statistical reduction in MYH2 mRNA expression in the SCI+SS-31 animals compared to Sham animals. There was an SCI-induced reduction in mRNA expression of the E3 ligase FBXO32 (MAFbx), but no effect of SS-31. In summary, a 50 kdyne contusion SCI was able to reduce body mass but was not associated with substantial muscle atrophy or alterations in gene expression profiles associated with muscle health and function 14 d post-injury. SS-31 was not associated with protection against SCI-related changes in body or muscle mass, protein synthesis or gene expression in hindlimb muscles.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Oligopeptídeos/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Composição Corporal/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Fatores de Tempo
13.
Bone ; 144: 115825, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33348128

RESUMO

Spinal cord injury (SCI) results in marked atrophy of sublesional skeletal muscle and substantial loss of bone. In this study, the effects of prolonged electrical stimulation (ES) and/or testosterone enanthate (TE) on muscle mass and bone formation in a rat model of SCI were tested. Compared to sham-transected animals, a significant reduction of the mass of soleus, plantaris and extensor digitorum longus (EDL) muscles was observed in animals 6 weeks post-SCI. Notably, ES or ES + TE resulted in the increased mass of the EDL muscles. ES or ES + TE significantly decreased mRNA levels of muscle atrophy markers (e.g., MAFbx and MurF1) in the EDL. Significant decreases in bone mineral density (BMD) (-27%) and trabecular bone volume (-49.3%) at the distal femur were observed in animals 6 weeks post injury. TE, ES and ES + TE treatment significantly increased BMD by +6.4%, +5.4%, +8.5% and bone volume by +22.2%, and +56.2% and+ 60.2%, respectively. Notably, ES alone or ES + TE resulted in almost complete restoration of cortical stiffness estimated by finite element analysis in SCI animals. Osteoblastogenesis was evaluated by colony-forming unit-fibroblastic (CFU-F) staining using bone marrow mesenchymal stem cells obtained from the femur. SCI decreased the CFU-F+ cells by -56.8% compared to sham animals. TE or ES + TE treatment after SCI increased osteoblastogenesis by +74.6% and +67.2%, respectively. An osteoclastogenesis assay revealed significantly increased TRAP+ multinucleated cells (+34.8%) in SCI animals compared to sham animals. TE, ES and TE + ES treatment following SCI markedly decreased TRAP+ cells by -51.3%, -40.3% and -46.9%, respectively. Each intervention greatly reduced the ratio of RANKL to OPG mRNA of sublesional long bone. Collectively, our findings demonstrate that after neurologically complete paralysis, dynamic muscle resistance exercise by ES reduced muscle atrophy, downregulated genes involved in muscle wasting, and restored mechanical loading to sublesional bone to a degree that allowed for the preservation of bone by inhibition of bone resorption and/or by facilitating bone formation.


Assuntos
Traumatismos da Medula Espinal , Animais , Densidade Óssea , Osso e Ossos , Estimulação Elétrica , Membro Posterior , Músculo Esquelético , Ratos , Traumatismos da Medula Espinal/terapia
14.
Ann N Y Acad Sci ; 1487(1): 43-55, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33107070

RESUMO

Whether T cells promote bone loss following immobilization after spinal cord injury (SCI) remains undetermined. Therefore, wild-type (WT) and T cell-deficient (Tcrb-/- ) male mice underwent sham or contusion SCI to cause hindlimb paralysis. Femurs were isolated and distal and midshaft regions were evaluated by microcomputed tomography scanning. Bone marrow (BM) levels of bone turnover markers, as well as receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG), were measured by ELISA. At 2 weeks post-SCI, immobilization resulted in marked reduction in trabecular fractional bone volume (55%), thickness (40%), connectivity, and cortical thickness only in the Tcrb-/- animals (interaction with P < 0.05). BM analysis revealed lower bone formation (procollagen type 1 intact N-terminal propeptide), higher bone resorption (tartrate-resistant acid phosphatase-5b), and a higher RANKL/OPG ratio in the Tcrb-/- SCI animals. At 5 weeks post-SCI, while both WT and Tcrb-/- paralyzed animals showed deterioration of all indices of bone structure, they were more severe in Tcrb-/- animals. In summary, unlike other skeletal disorders, loss of αß T cells compromises, rather than preserves, skeletal integrity under conditions of immobilization.


Assuntos
Reabsorção Óssea/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Traumatismos da Medula Espinal/complicações , Linfócitos T/patologia , Animais , Densidade Óssea/genética , Densidade Óssea/imunologia , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/imunologia , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Reabsorção Óssea/imunologia , Reabsorção Óssea/metabolismo , Contagem de Células , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/deficiência , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microtomografia por Raio-X
15.
Physiol Rep ; 8(3): e14357, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32026570

RESUMO

To determine whether muscle disuse after a spinal cord injury (SCI) produces elevated markers of cellular senescence and induces markers of the senescence-associated secretory phenotypes (SASPs) in paralyzed skeletal muscle. Four-month-old male Sprague-Dawley rats received a moderate-severe (250 kiloDyne) T-9 contusion SCI or Sham surgery and were monitored over 2 weeks, and 1-, 2-, or 3 months. Animals were sacrificed via isoflurane overdose and terminal exsanguination and the soleus was carefully excised and snap frozen. Protein expression of senescence markers p53, p27, and p16 was determined from whole soleus lysates using Western immunoblotting and RT-qPCR was used to determine the soleus gene expression of IL-1α, IL-1ß, IL-6, CXCL1, and TNFα. SCI soleus muscle displayed 2- to 3-fold higher total p53 protein expression at 2 weeks, and at 1 and 2 months when compared with Sham. p27 expression was stable across all groups and timepoints. p16 protein expression was lower at 3 months in SCI versus Sham, but not earlier timepoints. Gene expression was relatively stable between groups at 2 weeks. There were Surgery x Time interaction effects for IL-6 and TNFα mRNA expression but not for IL-1α, IL-1ß, or CXCL1. There were no main effects for time or surgery for IL-1α, IL-1ß, or CXCL1, but targeted t tests showed reductions in IL-1α and CXCL1 in SCI animals compared to Sham at 3 months and IL-1ß was reduced in SCI animals compared to Sham animals at the 2-month timepoint. The elevation in p53 does not appear consistent with the induction of SASP because mRNA expression of cytokines associated with senescence was not uniformly upregulated and, in some instances, was downregulated in the early chronic phase of SCI.


Assuntos
Músculo Esquelético/metabolismo , Traumatismos da Medula Espinal/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Contusões/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética , Regulação para Cima
16.
Neurotrauma Rep ; 1(1): 17-31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34223527

RESUMO

Spinal cord injury (SCI) is associated with obesity and is a risk factor for type 2 diabetes mellitus (T2DM). Immobilization, muscle atrophy, obesity, and loss of sympathetic innervation to the liver are believed to contribute to risks of these abnormalities. Systematic study of the mechanisms underlying SCI-induced metabolic disorders has been limited by a lack of animal models of insulin resistance following SCI. Therefore, the effects of a high-fat diet (HFD), which causes weight gain and glucose intolerance in neurologically intact mice, was tested in mice that had undergone a spinal cord transection at thoracic vertebra 10 (T10) or a sham-transection. At 84 days after surgery, Sham-HFD and SCI-HFD mice showed impaired intraperitoneal glucose tolerance when compared with Sham control (Sham-Con) or SCI control (SCI-Con) mice fed a standard control chow. Glucose tolerance in SCI-Con mice was comparable to that of Sham-Con mice. The mass of paralyzed skeletal muscle, liver, and epididymal, inguinal, and omental fat deposits were lower in SCI versus Sham groups, with lower liver mass present in SCI-HFD versus SCI-Con animals. SCI also produced sublesional bone loss, with no differences between SCI-Con and SCI-HFD groups. The results suggest that administration of a HFD to mice after SCI may provide a model to better understand mechanisms leading to insulin resistance post-SCI, as well as an approach to study pathogenesis of glucose intolerance that is independent of obesity.

17.
Physiol Rep ; 7(19): e14225, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31565870

RESUMO

Teriparatide and abaloparatide are parathyroid hormone receptor 1 (PTHR1) analogs with unexplained differential efficacy for the treatment of osteoporosis. Therefore, we compared the effects of abaloparatide and teriparatide on bone structure, turnover, and levels of receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG). Wild-type (WT) female mice were injected daily with vehicle or 20-80 µg/kg/day of teriparatide or abaloparatide for 30 days. Femurs and spines were examined by microcomputed tomography scanning and serum levels of bone turnover markers, RANKL, and OPG, were measured by ELISA. Both analogs similarly increased the distal femoral fractional trabecular bone volume, connectivity, and number, and reduced the structure model index (SMI) at 20-80 µg/kg/day doses. However, only abaloparatide exhibited a significant increase (13%) in trabecular thickness at 20 µg/kg/day dose. Femoral cortical evaluation showed that abaloparatide caused a greater dose-dependent increase in cortical thickness than teriparatide. Both teriparatide and abaloparatide increased lumbar 5 vertebral trabecular connectivity but had no or modest effect on other indices. Biochemical analysis demonstrated that abaloparatide promoted greater elevation of procollagen type 1 intact N-terminal propeptide, a bone formation marker, and tartrate-resistant acid phosphatase 5b levels, a bone resorption marker, and lowered the RANKL/OPG ratio. Furthermore, PTHR1 signaling was compared in cells treated with 0-100 nmol/L analog. Interestingly, abaloparatide had a markedly lower EC50 for cAMP formation (2.3-fold) and ß-arrestin recruitment (1.6-fold) than teriparatide. Therefore, abaloparatide-improved efficacy can be attributed to enhanced bone formation and cortical structure, reduced RANKL/OPG ratio, and amplified Gs-cAMP and ß-arrestin signaling.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Teriparatida/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , AMP Cíclico/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , beta-Arrestinas/efeitos dos fármacos , beta-Arrestinas/metabolismo
18.
Trials ; 20(1): 526, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443727

RESUMO

BACKGROUND: Persons with spinal cord injury (SCI) are at heightened risks of developing unfavorable cardiometabolic consequences due to physical inactivity. Functional electrical stimulation (FES) and surface neuromuscular electrical stimulation (NMES)-resistance training (RT) have emerged as effective rehabilitation methods that can exercise muscles below the level of injury and attenuate cardio-metabolic risk factors. Our aims are to determine the impact of 12 weeks of NMES + 12 weeks of FES-lower extremity cycling (LEC) compared to 12 weeks of passive movement + 12 weeks of FES-LEC on: (1) oxygen uptake (VO2), insulin sensitivity, and glucose disposal in adults with SCI; (2) skeletal muscle size, intramuscular fat (IMF), and visceral adipose tissue (VAT); and (3) protein expression of energy metabolism, protein molecules involved in insulin signaling, muscle hypertrophy, and oxygen uptake and electron transport chain (ETC) activities. METHODS/DESIGN: Forty-eight persons aged 18-65 years with chronic (> 1 year) SCI/D (AIS A-C) at the C5-L2 levels, equally sub-grouped by cervical or sub-cervical injury levels and time since injury, will be randomized into either the NMES + FES group or Passive + FES (control group). The NMES + FES group will undergo 12 weeks of evoked RT using twice-weekly NMES and ankle weights followed by twice-weekly progressive FES-LEC for an additional 12 weeks. The control group will undergo 12 weeks of passive movement followed by 12 weeks of progressive FES-LEC. Measurements will be performed at baseline (B; week 0), post-intervention 1 (P1; week 13), and post-intervention 2 (P2; week 25), and will include: VO2 measurements, insulin sensitivity, and glucose effectiveness using intravenous glucose tolerance test; magnetic resonance imaging to measure muscle, IMF, and VAT areas; muscle biopsy to measure protein expression and intracellular signaling; and mitochondrial ETC function. DISCUSSION: Training through NMES + RT may evoke muscle hypertrophy and positively impact oxygen uptake, insulin sensitivity, and glucose effectiveness. This may result in beneficial outcomes on metabolic activity, body composition profile, mitochondrial ETC, and intracellular signaling related to insulin action and muscle hypertrophy. In the future, NMES-RT may be added to FES-LEC to improve the workloads achieved in the rehabilitation of persons with SCI and further decrease muscle wasting and cardio-metabolic risks. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02660073 . Registered on 21 Jan 2016.


Assuntos
Ciclismo , Terapia por Estimulação Elétrica/métodos , Metabolismo Energético , Músculo Esquelético/inervação , Atrofia Muscular/terapia , Treinamento Resistido/métodos , Traumatismos da Medula Espinal/reabilitação , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Glicemia/metabolismo , Terapia por Estimulação Elétrica/efeitos adversos , Feminino , Humanos , Insulina/sangue , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/sangue , Atrofia Muscular/diagnóstico , Atrofia Muscular/fisiopatologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Treinamento Resistido/efeitos adversos , Traumatismos da Medula Espinal/sangue , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Virginia , Adulto Jovem
19.
Methods Mol Biol ; 1890: 29-40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30414142

RESUMO

One critical determinant of levels of gene expression is binding of transcription factors to cognate DNA sequences in promoter and enhancer regions of target genes. Transcription factors are DNA-binding proteins to which transcriptional co-regulators are bound, ultimately resulting in histone modifications that change chromatin structure to regulate transcription. Examples of transcription factors include hormone-activated transcription factors such as the glucocorticoid receptor, transcription factors regulated by cell surface receptors such as FOXO1 and Smad2/Smad3, and many others. Promoter regions typically contain multiple, diverse transcription factor-binding sites. Binding sites for cell-type-specific transcription factors involved in cell fate determination such as Runx2, MyoD, or myogenin are frequently observed. Promoter regions are located within ~2 kb upstream of the transcriptional start site, whereas enhancers may be located at some distance from promoter sequences and exert long-range effects. Here, we will discuss classical and emerging technologies by which one can understand the role of binding of specific transcription factors in regulation of transcription of FOXO genes.


Assuntos
Sítios de Ligação , Proteína Forkhead Box O1/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina/métodos , Elementos Facilitadores Genéticos , Epigênese Genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Ligação Proteica
20.
Muscle Nerve ; 58(4): 592-599, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30028528

RESUMO

INTRODUCTION: Paralysis and unloading of skeletal muscle leads to a rapid loss in muscle size, function and oxidative capacity. The reduction in metabolic capability after disuse leads to dysregulation and increased breakdown of mitochondria by mitophagy. METHODS: Eight-week-old C57BL/6 male mice were given a sham surgery or sciatic nerve transection. Animals were euthanized at 7, 14, 21, or 35 days postsurgery. Whole gastrocnemius muscles were isolated from the animal, weighed and used for Western blotting. RESULTS: Markers of mitochondrial fusion were reduced while fission proteins were elevated following a sciatic nerve transection. There were elevations in phosphorylated unc-51-like kinase 1 (ULK1S555 ) and total expression of Beclin1, and of the mitophagy markers PINK1, p62, and microtubule-associated proteins 1A/1B light chain 3b (LC3-II). CONCLUSIONS: Paralysis of the gastrocnemius leads to a progressive elevation in expression of mitochondrial fission and mitophagic proteins. Rehabilitative or pharmaceutical interventions to limit excess mitophagy may be effective therapies to protect paralyzed muscle mass and function. Muscle Nerve 58: 592-599, 2018.


Assuntos
Dinâmica Mitocondrial , Mitofagia , Músculo Esquelético/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/lesões , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Denervação Muscular , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Tamanho do Órgão , Fosfoproteínas , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA