Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 10(2): e1003974, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516391

RESUMO

The accumulation of somatic mitochondrial DNA (mtDNA) mutations is implicated in aging and common diseases of the elderly, including cancer and neurodegenerative disease. However, the mechanisms that influence the frequency of somatic mtDNA mutations are poorly understood. To develop a simple invertebrate model system to address this matter, we used the Random Mutation Capture (RMC) assay to characterize the age-dependent frequency and distribution of mtDNA mutations in the fruit fly Drosophila melanogaster. Because oxidative stress is a major suspect in the age-dependent accumulation of somatic mtDNA mutations, we also used the RMC assay to explore the influence of oxidative stress on the somatic mtDNA mutation frequency. We found that many of the features associated with mtDNA mutations in vertebrates are conserved in Drosophila, including a comparable somatic mtDNA mutation frequency (∼10(-5)), an increased frequency of mtDNA mutations with age, and a prevalence of transition mutations. Only a small fraction of the mtDNA mutations detected in young or old animals were G∶C to T∶A transversions, a signature of oxidative damage, and loss-of-function mutations in the mitochondrial superoxide dismutase, Sod2, had no detectable influence on the somatic mtDNA mutation frequency. Moreover, a loss-of-function mutation in Ogg1, which encodes a DNA repair enzyme that removes oxidatively damaged deoxyguanosine residues (8-hydroxy-2'-deoxyguanosine), did not significantly influence the somatic mtDNA mutation frequency of Sod2 mutants. Together, these findings indicate that oxidative stress is not a major cause of somatic mtDNA mutations. Our data instead suggests that somatic mtDNA mutations arise primarily from errors that occur during mtDNA replication. Further studies using Drosophila should aid in the identification of factors that influence the frequency of somatic mtDNA mutations.


Assuntos
Envelhecimento/genética , DNA Mitocondrial/genética , Mutação/genética , Estresse Oxidativo , Envelhecimento/patologia , Animais , DNA Glicosilases/genética , Reparo do DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Modelos Animais , Taxa de Mutação , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética
2.
J Pharmacol Exp Ther ; 348(2): 336-45, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24297779

RESUMO

Genetic variation in the multidrug resistance gene ABCB1, which encodes the efflux transporter P-glycoprotein (P-gp), has been associated with Parkinson disease. Our goal was to investigate P-gp transport of paraquat, a Parkinson-associated neurotoxicant. We used in vitro transport models of ATPase activity, xenobiotic-induced cytotoxicity, transepithelial permeability, and rhodamine-123 inhibition. We also measured paraquat pharmacokinetics and brain distribution in Friend leukemia virus B-type (FVB) wild-type and P-gp-deficient (mdr1a(-/-)/mdr1b(-/-)) mice following 10, 25, 50, and 100 mg/kg oral doses. In vitro data showed that: 1) paraquat failed to stimulate ATPase activity; 2) resistance to paraquat-induced cytotoxicity was unchanged in P-gp-expressing cells in the absence or presence of P-gp inhibitors GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] and verapamil-37.0 [95% confidence interval (CI): 33.2-41.4], 46.2 (42.5-50.2), and 34.1 µM (31.2-37.2)-respectively; 3) transepithelial permeability ratios of paraquat were the same in P-gp-expressing and nonexpressing cells (1.55 ± 0.39 and 1.39 ± 0.43, respectively); and 4) paraquat did not inhibit rhodamine-123 transport. Population pharmacokinetic modeling revealed minor differences between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice: clearances of 0.47 [95% confidence interval (CI): 0.42-0.52] and 0.78 l/h (0.58-0.98), respectively, and volume of distributions of 1.77 (95% CI: 1.50-2.04) and 3.36 liters (2.39-4.33), respectively; however, the change in clearance was in the opposite direction of what would be expected. It is noteworthy that paraquat brain-to-plasma partitioning ratios and total brain accumulation were the same across doses between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice. These studies indicate that paraquat is not a P-gp substrate. Therefore, the association between ABCB1 pharmacogenomics and Parkinson disease is not attributed to alterations in paraquat transport.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Células Epiteliais/efeitos dos fármacos , Herbicidas/farmacocinética , Paraquat/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Corantes Fluorescentes/metabolismo , Herbicidas/administração & dosagem , Herbicidas/metabolismo , Herbicidas/farmacologia , Masculino , Moduladores de Transporte de Membrana/farmacologia , Camundongos , Camundongos Knockout , Paraquat/administração & dosagem , Paraquat/metabolismo , Paraquat/farmacologia , Doença de Parkinson/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodamina 123/metabolismo , Sus scrofa , Distribuição Tecidual , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
3.
Neuropharmacology ; 61(4): 677-86, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21635908

RESUMO

High doses of methamphetamine induce the excessive release of dopamine resulting in neurotoxicity. However, moderate activation of dopamine receptors can promote neuroprotection. Therefore, we used in vitro and in vivo models of stroke to test the hypothesis that low doses of methamphetamine could induce neuroprotection. We demonstrate that methamphetamine does induce a robust, dose-dependent, neuroprotective response in rat organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD). A similar dose dependant neuroprotective effect was observed in rats that received an embolic middle cerebral artery occlusion (MCAO). Significant improvements in behavioral outcomes were observed in rats when methamphetamine administration delayed for up to 12 h after MCAO. Methamphetamine-mediated neuroprotection was significantly reduced in slice cultures by the addition of D1 and D2 dopamine receptor antagonist. Treatment of slice cultures with methamphetamine resulted in the dopamine-mediated activation of AKT in a PI3K dependant manner. A similar increase in phosphorylated AKT was observed in the striatum, cortex and hippocampus of methamphetamine treated rats following MCAO. Methamphetamine-mediated neuroprotection was lost in rats when PI3K activity was blocked by wortmannin. Finally, methamphetamine treatment decreased both cleaved caspase 3 levels in slice cultures following OGD and TUNEL staining within the striatum and cortex in rats following transient MCAO. These data indicate that methamphetamine can mediate neuroprotection through activation of a dopamine/PI3K/AKT-signaling pathway.


Assuntos
Metanfetamina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Fosfatidilinositol 3-Quinase/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hipocampo/patologia , Masculino , Técnicas de Cultura de Órgãos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controle
4.
Am J Respir Cell Mol Biol ; 42(5): 537-44, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19541843

RESUMO

Although use of methamphetamine (MA) by smoking is the fastest growing method of administration, very limited data are available describing the effects of smoked MA. Using a murine inhalation exposure system, we explored the pulmonary effects of low-dose acute inhalation exposure to MA vapor (smoke). Inhalation of MA vapor resulted in transiently reduced pulmonary function, as measured by transpulmonary resistance, dynamic compliance, and whole-body plethysmography compared with unexposed control animals. These changes were associated with an approximately 34% reduction in serotonin (5-hydroxytryptamine [5-HT]) metabolism/inactivation to 5-hydroxyindolacetic acid, and a nearly 40% reduction in monoamine oxidase (MAO)-A activity in the lung. Pretreatment of mice with a selective 5-HT reuptake inhibitor completely ablated the MA-induced changes in pulmonary function, confirming a key role for the 5-HT transporter (serotonin transporter [SERT]) and the serotonergic system in this effect. Immunofluorescent staining of mouse lung tissue confirmed high expression of SERT in airway epithelial cells. Using mouse airway epithelial cell line, LA-4, and purified human MAO-A, it was demonstrated that MA impedes 5-HT metabolism through direct inhibition of MAO-A activity in vitro. Together, these data demonstrate that low-dose exposure to MA results in reduced pulmonary function mediated via SERT and subsequent perturbation of 5-HT metabolism in the lung. This supports a role for the serotonergic system in MA-mediated pulmonary effects.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Metanfetamina/administração & dosagem , Metanfetamina/farmacologia , Serotonina/metabolismo , Animais , Citalopram/administração & dosagem , Citalopram/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Pulmão/citologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Monoaminoxidase/metabolismo , Testes de Função Respiratória , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Fatores de Tempo
5.
Free Radic Biol Med ; 46(6): 828-35, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19167482

RESUMO

The guanine base is prone to oxidation by free radicals regardless of the cellular moiety it is bound to. However, under conditions of oxidative stress, 8-oxoguanosine triphosphate (oxo(8)GTP) formation has been shown to occur without oxidation of the guanine base in DNA. In vitro studies have suggested that oxo(8)GTP could impact G-protein signaling and RNA synthesis. Whether increased levels of oxo(8)GTP translate into cellular malfunction is unknown. Data presented herein show that oxo(8)GTP is formed in cell-free preparations as well as in PC12 cells after exposure to physiologically relevant oxidative conditions generated with 10 microM copper sulfate and 1 mM L-ascorbic acid (Cu/Asc). We also determined that oxo(8)GTP has biological activity as a potent inhibitor of nitric oxide-stimulated soluble guanylyl cyclase (sGC). The increase in oxo(8)GTP formation in purified GTP and PC12 cells exposed to Cu/Asc caused a significant reduction in the product of sGC activity, cGMP. This oxidation of GTP was attenuated by the addition of reduced glutathione under these same Cu/Asc conditions, thus preventing the decrease in sGC activity. This suggests that oxo(8)GTP is produced by free radicals in vivo and could have significant impact on cell functions regulated by sGC activity such as synaptic plasticity in the central nervous system.


Assuntos
Sistema Nervoso Central/enzimologia , Ativação Enzimática/efeitos dos fármacos , Guanosina Trifosfato/análogos & derivados , Guanilato Ciclase/antagonistas & inibidores , Feocromocitoma/enzimologia , Animais , Ácido Ascórbico/farmacologia , Extratos Celulares , Linhagem Celular , Sistema Nervoso Central/patologia , Cromatografia Líquida de Alta Pressão , Sulfato de Cobre/farmacologia , GMP Cíclico/metabolismo , Radicais Livres/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Técnicas In Vitro , Óxido Nítrico/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo , Feocromocitoma/patologia , Ratos
6.
J Neurosci ; 28(28): 7219-30, 2008 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-18614692

RESUMO

Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung-/- embryonic fibroblasts, and conferred death of cultured Ung-/- hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung-/- but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung-/- mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency.


Assuntos
Encefalopatias/etiologia , Deficiência de Ácido Fólico/complicações , Degeneração Neural/etiologia , Uracila-DNA Glicosidase/deficiência , Análise de Variância , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Córtex Cerebral/citologia , Nucleotídeos de Desoxiuracil/metabolismo , Embrião de Mamíferos , Comportamento Exploratório/fisiologia , Deficiência de Ácido Fólico/patologia , Glutationa/metabolismo , Hipocampo/citologia , Homocisteína/sangue , Aprendizagem em Labirinto/fisiologia , Metionina/sangue , Camundongos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/fisiologia , Neurotransmissores/metabolismo , Natação
7.
Toxicol Sci ; 99(1): 277-88, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17578862

RESUMO

The community members of Libby, MT, have experienced significant asbestos exposure and developed numerous asbestos-related diseases including fibrosis and lung cancer due to an asbestos-contaminated vermiculite mine near the community. The form of asbestos in the contaminated vermiculite has been characterized in the amphibole family of fibers. However, the pathogenic effects of these fibers have not been previously characterized. The purpose of this study is to determine the cellular consequences of Libby amphibole exposure in macrophages compared to another well-characterized amphibole fiber; crocidolite asbestos. Our results indicate that Libby asbestos fibers are internalized by macrophages and localize to the cytoplasm and cytoplasmic vacuoles similar to crocidolite fibers. Libby asbestos fiber internalization generates a significant increase in intracellular reactive oxygen species (ROS) as determined by dichlorofluorescein diacetate and dihydroethidine fluorescence indicating that the superoxide anion is the major contributing ROS generated by Libby asbestos. Elevated superoxide levels in macrophages exposed to Libby asbestos coincide with a significant suppression of total superoxide dismutase activity. Both Libby and crocidolite asbestos generate oxidative stress in exposed macrophages by decreasing intracellular glutathione levels. Interestingly crocidolite asbestos, but not Libby asbestos, induces significant DNA damage in macrophages. This study provides evidence that the difference in the level of DNA damage observed between Libby and crocidolite asbestos may be a combined consequence of the distinct chemical compositions of each fiber as well as the activation of separate cellular pathways during asbestos exposure.


Assuntos
Amiantos Anfibólicos/toxicidade , Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Amiantos Anfibólicos/metabolismo , Asbesto Crocidolita/metabolismo , Asbesto Crocidolita/toxicidade , Linhagem Celular , Dano ao DNA , DNA Glicosilases/metabolismo , Relação Dose-Resposta a Droga , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Montana , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
8.
J Environ Prot Sci ; 1: 23-28, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20463849

RESUMO

Reduced glutathione (GSH) is an intracellular molecule essential for many aspects of cell physiology and defense. Determination of GSH has been used to identify potential anti-cancer drugs and for the assessment of drug toxicity via generation of oxidative stress. The described protocol was designed to modify existing protocols for the fluorescent detection of intracellular GSH in a high throughput 96-well microplate format. Dibromobimane was used to label intracellular GSH, and an additional dye, Hoechst 33342 was used to measure cell density for data normalization. Cell density curves were performed using HEK 293T cells to determine the optimal starting cell density, (< 8.0 × 10(4) cells/well) for fluorescent analysis. Fluorescent dyes were also analyzed for compatibility and spectral overlap. The method was further validated by exposing HEK 293T cells to GSH modulating agents; tert-butylhydroquinone a potent inducer of GSH, and L-buthionine-(SR)-sulfoximine a potent inhibitor of GSH. This study provides a fast, simple method for the high throughput screening of GSH in a widely available 96-well format. It also addresses the pitfalls associated with fluorescent compounds in cell culture and proper data normalization.

9.
FASEB J ; 20(6): 788-90, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16484331

RESUMO

Oxidative damage to DNA has been associated with neurodegenerative diseases. Developmental exposure to lead (Pb) has been shown to elevate the Alzheimer's disease (AD) related beta-amyloid peptide (Abeta), which is known to generate reactive oxygen species in the aging brain. This study measures the lifetime cerebral 8-hydroxy-2'-deoxyguanosine (oxo8dG) levels and the activity of the DNA repair enzyme 8-oxoguanine DNA glycosylase (Ogg1) in rats developmentally exposed to Pb. Oxo8dG was transiently modulated early in life (Postnatal day 5), but was later elevated 20 months after exposure to Pb had ceased, while Ogg1 activity was not altered. Furthermore, an age-dependent loss in the inverse correlation between Ogg1 activity and oxo8dG accumulation was observed. The effect of Pb on oxo8dG levels did not occur if animals were exposed to Pb in old age. These increases in DNA damage occurred in the absence of any Pb-induced changes in copper/zinc-superoxide dismutase (SOD1), manganese-SOD (SOD2), and reduced-form glutathion (GSH). These data suggest that oxidative damage and neurodegeneration in the aging brain could be impacted by the developmental disturbances.


Assuntos
Envelhecimento/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dano ao DNA/efeitos dos fármacos , Chumbo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Animais , Animais Recém-Nascidos , Encéfalo/patologia , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Feminino , Glutationa/metabolismo , Masculino , Regiões Promotoras Genéticas , Ratos , Ratos Long-Evans , Superóxido Dismutase/metabolismo
10.
Free Radic Biol Med ; 36(9): 1144-54, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15082068

RESUMO

The mechanism of neurotoxicity produced by the interaction of melanin with manganese was investigated in PC12-derived neuronal cell cultures. The cells were incubated with melanin (25-500 microg/ml), MnCl2 (10 ng/ml-100 microg/ml) and a combination of both substances for 24 and 72 h. Incubation with either toxicant alone resulted in a minimal decrease in cell viability. The combination of melanin and manganese caused significant (up to 60%) decreases in viability of PC12 cells in a dose-dependent manner. Increases in oxidative DNA damage, indicated by levels of 8-hydroxy-2'deoxyguanosine (8-oxodG), was associated with decreased cell viability. Melanin alone, but not manganese alone, resulted in increased oxidative DNA damage. The maximal increase in 8-oxodG caused by melanin was about seven times higher than control after 24 h of exposure. The activity of the DNA repair enzyme, 8-oxoguanine DNA glycosylase (OGG1), was increased in cells incubated with single toxicants and their combinations for 24 h. On the third day of incubation with the toxicants, activity of OGG1 declined below control levels and cell viability significantly decreased. Melanin was observed to have an inhibitory effect on OGG1 activity. Study of the regulation of OGG1 activity in response to melanin and manganese may provide insights into the vulnerability of nigral neurons to oxidative stress in Parkinson's disease.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Guanina/análogos & derivados , Manganês/farmacologia , Melaninas/toxicidade , Neurônios/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , DNA/análise , DNA/química , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/metabolismo , Guanina/análise , Guanina/química , Peroxidação de Lipídeos/efeitos dos fármacos , Melaninas/metabolismo , Neurônios/metabolismo , Células PC12 , Ratos , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/análise
11.
Neuron ; 41(4): 549-61, 2004 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-14980204

RESUMO

Increasing evidence indicates that neurodegeneration involves the activation of the cell cycle machinery in postmitotic neurons. However, the purpose of these cell cycle-associated events in neuronal apoptosis remains unknown. Here we tested the hypothesis that cell cycle activation is a critical component of the DNA damage response in postmitotic neurons. Different genotoxic compounds (etoposide, methotrexate, and homocysteine) induced apoptosis accompanied by cell cycle reentry of terminally differentiated cortical neurons. In contrast, apoptosis initiated by stimuli that do not target DNA (staurosporine and colchicine) did not initiate cell cycle activation. Suppression of the function of ataxia telangiectasia mutated (ATM), a proximal component of DNA damage-induced cell cycle checkpoint pathways, attenuated both apoptosis and cell cycle reentry triggered by DNA damage but did not change the fate of neurons exposed to staurosporine and colchicine. Our data suggest that cell cycle activation is a critical element of the DNA damage response of postmitotic neurons leading to apoptosis.


Assuntos
Apoptose/genética , Ciclo Celular/genética , Dano ao DNA/genética , Degeneração Neural/genética , Neurônios/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular , Células Cultivadas , Colchicina/farmacologia , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA , Etoposídeo/farmacologia , Feminino , Homocisteína/farmacologia , Masculino , Metotrexato/farmacologia , Camundongos , Degeneração Neural/metabolismo , Neurônios/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Ratos , Estaurosporina/farmacologia , Proteínas Supressoras de Tumor
12.
Free Radic Biol Med ; 33(2): 292-8, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12106825

RESUMO

The enzyme 8-oxoguanine DNA glycosylase 1 participates in the repair of damaged DNA by excising the oxidized base 8-hydroxy-2'-deoxyguanosine. We have previously demonstrated that enzymatic activity of this enzyme is inversely related to the levels of the damaged base in specific brain regions. We now report that the activity of 8-oxoguanine DNA glycosylase 1 is increased in a region-specific manner following treatment with diethylmaleate, a compound that reduces glutathione levels in the cell. A single treatment with diethylmaleate elicited a significant increase ( approximately 2-fold) in the activity of 8-oxoguanine DNA glycosylase 1 in three brain regions with low basal levels of activity (cerebellum, cortex, and pons/medulla). There was no change in the activity of 8-oxoguanine DNA glycosylase 1 in those regions with high basal levels of activity (hippocampus, caudate/putamen, and midbrain). This is the first report to demonstrate that DNA repair capacity can be upregulated in the CNS, and the increased repair activity correlates with a reduction in the levels of DNA damage. The brain region-specific capacity to deal with increased oxidative damage to DNA may be responsible, in part, for the vulnerability of specific neuronal populations with aging, sources of oxidative stress, and neurodegenerative diseases.


Assuntos
Encéfalo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Maleatos/toxicidade , Estresse Oxidativo/fisiologia , 8-Hidroxi-2'-Desoxiguanosina , Animais , Biomarcadores , Encéfalo/metabolismo , DNA-Formamidopirimidina Glicosilase , Desoxiguanosina/metabolismo , Radicais Livres/metabolismo , Glutationa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Glicosil Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA