Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sci Rep ; 13(1): 7766, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173330

RESUMO

Cholangiocarcinoma (CCA) is a rare cancer characterized by a global increasing incidence. Extracellular vesicles (EV) contribute to many of the hallmarks of cancer through transfer of their cargo molecules. The sphingolipid (SPL) profile of intrahepatic CCA (iCCA)-derived EVs was characterized by liquid chromatography-tandem mass spectrometry analysis. The effect of iCCA-derived EVs as mediators of inflammation was assessed on monocytes by flow cytometry. iCCA-derived EVs showed downregulation of all SPL species. Of note, poorly-differentiated iCCA-derived EVs showed a higher ceramide and dihydroceramide content compared with moderately-differentiated iCCA-derived EVs. Of note, higher dihydroceramide content was associated with vascular invasion. Cancer-derived EVs induced the release of pro-inflammatory cytokines in monocytes. Inhibition of synthesis of ceramide with Myriocin, a specific inhibitor of the serine palmitoyl transferase, reduced the pro-inflammatory activity of iCCA-derived EVs, demonstrating a role for ceramide as mediator of inflammation in iCCA. In conclusion, iCCA-derived EVs may promote iCCA progression by exporting the excess of pro-apoptotic and pro-inflammatory ceramides.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Vesículas Extracelulares , Humanos , Monócitos , Ceramidas/análise , Inflamação , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Vesículas Extracelulares/química
2.
Front Med (Lausanne) ; 10: 1124008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744130

RESUMO

A chronic inflammatory condition characterizes various lung diseases. Interestingly, a great contribution to inflammation is made by altered lipids metabolism, that can be caused by the deregulation of the mammalian target of rapamycin complex-1 (mTORC1) activity. There is evidence that one of mTOR downstream effectors, the sterol regulatory element-binding protein (SREBP), regulates the transcription of enzymes involved in the de novo fatty acid synthesis. Given its central role in cell metabolism, mTOR is involved in several biological processes. Among those, mTOR is a driver of senescence, a process that might contribute to the establishment of chronic lung disease because the characteristic irreversible inhibition of cell proliferation, associated to the acquisition of a pro-inflammatory senescence-associated secretory phenotype (SASP) supports the loss of lung parenchyma. The deregulation of mTORC1 is a hallmark of lymphangioleiomyomatosis (LAM), a rare pulmonary disease predominantly affecting women which causes cystic remodeling of the lung and progressive loss of lung function. LAM cells have senescent features and secrete SASP components, such as growth factors and pro-inflammatory molecules, like cancer cells. Using LAM as a paradigm of chronic and metastatic lung disease, here we review the published data that point out the role of dysregulated lipid metabolism in LAM pathogenesis. We will discuss lipids' role in the development and progression of the disease, to hypothesize novel LAM biomarkers and to propose the pharmacological regulation of lipids metabolism as an innovative approach for the treatment of the disease.

3.
Biomedicines ; 9(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34572307

RESUMO

The role of S1P in Cystic Fibrosis (CF) has been investigated since 2001, when it was first described that the CFTR channel regulates the inward transport of S1P. From then on, various studies have associated F508del CFTR, the most frequent mutation in CF patients, with altered S1P expression in tissue and plasma. We found that human bronchial epithelial immortalized and primary cells from CF patients express more S1P than the control cells, as evidenced by mass spectrometry analysis. S1P accumulation relies on two- to four-fold transcriptional up-regulation of SphK1 and simultaneous halving of SGPL1 in CF vs. control cells. The reduction of SGPL1 transcription protects S1P from irreversible degradation, but the excessive accumulation is partially prevented by the action of the two phosphatases that are up-regulated compared to control cells. For the first time in CF, we describe that Spns2, a non-ATP dependent transporter that normally extrudes S1P out of the cells, shows deficient transcriptional and protein expression, thus impairing S1P accrual dissipation. The in vitro data on CF human bronchial epithelia correlates with the impaired expression of Spns2 observed in CF human lung biopsies compared to healthy control.

4.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208778

RESUMO

Parkinson's disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid-protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients. Autophagy is impaired in PD, reducing the ability of neurons to clear protein aggregates, thus worsening stress conditions and inducing neuronal death. The inhibition of ceramide synthesis by myriocin (Myr) in SH-SY5Y neuronal cells treated with preformed α-synuclein fibrils reduced intracellular aggregates, favoring their sequestration into lysosomes. This was associated with TFEB activation, increased expression of TFEB and LAMP2, and the cytosolic accumulation of LC3II, indicating that Myr promotes autophagy. Myr significantly reduces the fibril-related production of inflammatory mediators and lipid peroxidation and activates NRF2, which is downregulated in PD. Finally, Myr enhances the expression of genes that control neurotransmitter transport (SNARE complex, VMAT2, and DAT), whose progressive deficiency occurs in PD neurodegeneration. The present study suggests that counteracting the accumulation of inflammatory lipids could represent a possible therapeutic strategy for PD.


Assuntos
Ceramidas/biossíntese , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Vias Biossintéticas/efeitos dos fármacos , Linhagem Celular Tumoral , Gerenciamento Clínico , Suscetibilidade a Doenças , Ácidos Graxos Monoinsaturados/metabolismo , Humanos , Espaço Intracelular/metabolismo , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Esfingolipídeos/metabolismo
5.
Exp Eye Res ; 207: 108601, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33910035

RESUMO

Electrical stimulation (ES) of the eye represents a therapeutic approach in various clinical applications ranging from retinal dystrophies, age-related macular degeneration, retinal artery occlusion and nonarteritic ischemic optic neuropathy. In clinical practice, ES of the eye is mainly performed with a transcorneal or transpalpebral approach. These procedures are non-invasive and well-tolerated by the patients, reporting only minimal and transient adverse events, while serious adverse effects were not observed. Despite the growing literature on animal models, only clinical parameters have been investigated in humans and few data are available about biochemical changes induced by ES of the eye. The purpose of this study is to investigate the possible mechanism that regulates the beneficial effects of ES on retinal cells function and survival in humans. 28 patients undergoing pars plana vitrectomy (PPV) for idiopathic epiretinal membrane (iERM) were randomly divided in two groups: 13 patients were treated with transpalpebral ES before surgery and 15 underwent surgery with no prior treatment. Vitreous samples were collected for biochemical analysis during PPV. ES treatment leads to a reduction in the vitreous expression of both proinflammatory cytokines, namely IL-6 and IL-8, and proinflammatory lipid mediators, such as lysophosphatidylcholine. Indeed, we observed a 70% decrease of lysophosphatidylcholine 18:0, which has been proven to exert the greatest proinflammatory activities among the lysophosphatidylcholine class. The content of triglycerides is also affected and significantly decreased following ES application. The vitreous composition of patients undergoing PPV for iERM displays significant changes following ES treatment. Proinflammatory cytokines and bioactive lipid mediators expression decreases, suggesting an overall anti-inflammatory potential of ES. The investigation of the mechanism by which this treatment alters the retinal neurons leading to good outcomes is essential for supporting ES therapeutic application in various types of retinal diseases.


Assuntos
Citocinas/metabolismo , Terapia por Estimulação Elétrica , Membrana Epirretiniana/terapia , Lisofosfatidilcolinas/metabolismo , Triglicerídeos/metabolismo , Corpo Vítreo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática , Membrana Epirretiniana/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização por Electrospray , Vitrectomia
6.
Cell Signal ; 81: 109928, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33482299

RESUMO

Cystic fibrosis (CF) is a hereditary disease mostly related to ΔF508 CFTR mutation causing a proteinopathy that is characterized by multiple organ dysfunction, primarily lungs chronic inflammation, and infection. Defective autophagy and accumulation of the inflammatory lipid ceramide have been proposed as therapeutic targets. Accumulation of lipids and cholesterol was reported in the airways of CF patients, together with altered triglycerides and cholesterol levels in plasma, thus suggesting a disease-related dyslipidemia. Myriocin, an inhibitor of sphingolipids synthesis, significantly reduces inflammation and activates TFEB-induced response to stress, enhancing fatty acids oxidation and promoting autophagy. Myriocin ameliorates the response against microbial infection in CF models and patients' monocytes. Here we show that CF broncho-epithelial cells exhibit an altered distribution of intracellular lipids. We demonstrated that lipid accumulation is supported by an enhanced synthesis of fatty acids containing molecules and that Myriocin is able to reduce such accumulation. Moreover, Myriocin modulated the transcriptional profile of CF cells in order to restore autophagy, activate an anti-oxidative response, stimulate lipid metabolism and reduce lipid peroxidation. Moreover, lipid storage may be altered in CF cells, since we observed a reduced expression of lipid droplets related proteins named perilipin 3 and 5 and seipin. To note, Myriocin up-regulates the expression of genes that are involved in lipid droplets biosynthesis and maturation. We suggest that targeting sphingolipids de novo synthesis may counteract lipids accumulation by modulating CF altered transcriptional profile, thus restoring autophagy and lipid metabolism homeostasis.


Assuntos
Brônquios/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Brônquios/patologia , Linhagem Celular Transformada , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Metabolismo dos Lipídeos/genética
7.
Cancers (Basel) ; 12(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527016

RESUMO

Carbohydrate antigen 19.9 (CA19.9) is used as a tumor marker for clinical and research purposes assuming that it is abundantly produced by gastrointestinal cancer cells due to a cancer-associated aberrant glycosylation favoring its synthesis. Recent data has instead suggested a different picture, where immunodetection on tissue sections matches biochemical and molecular data. In addition to CA19.9, structurally related carbohydrate antigens Lewis a and Lewis b are, in fact, undetectable in colon cancer, due to the down-regulation of a galactosyltransferase necessary for their synthesis. In the pancreas, no differential expression of CA19.9 or cognate glycosyltransferases occurs in cancer. Ductal cells only express such Lewis antigens in a pattern affected by the relative levels of each glycosyltransferase, which are genetically and epigenetically determined. The elevation of circulating antigens seems to depend on the obstruction of neoplastic ducts and loss of polarity occurring in malignant ductal cells. Circulating Lewis a and Lewis b are indeed promising candidates for monitoring pancreatic cancer patients that are negative for CA19.9, but not for improving the low diagnostic performance of such an antigen. Insufficient biological data are available for gastric and bile duct cancer. Studying each patient in a personalized manner determining all Lewis antigens in the surgical specimens and in the blood, together with the status of the tissue-specific glycosylation machinery, promises fruitful advances in translational research and clinical practice.

8.
Cells ; 9(5)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408521

RESUMO

Altered lipid metabolism has been associated to cystic fibrosis disease, which is characterized by chronic lung inflammation and various organs dysfunction. Here, we present the validation of an untargeted lipidomics approach based on high-resolution mass spectrometry aimed at identifying those lipid species that unequivocally sign CF pathophysiology. Of n.13375 mass spectra recorded on cystic fibrosis bronchial epithelial airways epithelial cells IB3, n.7787 presented the MS/MS data, and, after software and manual validation, the final number of annotated lipids was restricted to n.1159. On these lipids, univariate and multivariate statistical approaches were employed in order to select relevant lipids for cellular phenotype discrimination between cystic fibrosis and HBE healthy cells. In cystic fibrosis IB3 cells, a pervasive alteration in the lipid metabolism revealed changes in the classes of ether-linked phospholipids, cholesterol esters, and glycosylated sphingolipids. Through functions association, it was evidenced that lipids variation involves the moiety implicated in membrane composition, endoplasmic reticulum, mitochondria compartments, and chemical and biophysical lipids properties. This study provides a new perspective in understanding the pathogenesis of cystic fibrosis and strengthens the need to use a validated mass spectrometry-based lipidomics approach for the discovery of potential biomarkers and perturbed metabolism.


Assuntos
Fibrose Cística/metabolismo , Lipidômica , Lipídeos/análise , Vias Biossintéticas , Linhagem Celular , Análise Discriminante , Células Epiteliais/metabolismo , Humanos , Análise dos Mínimos Quadrados , Metabolismo dos Lipídeos , Lipídeos/biossíntese , Fenótipo
9.
Hum Pathol ; 99: 98-106, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32272124

RESUMO

AIMS: Vascular malformations (vMs) encompass a wide range of diseases often associated with somatic or, more rarely, germinal genetic mutations. A mutation in the PIK3Ca/mTOR pathway is more often involved in various vMs. CD10 and CD34 are cellular markers that may play a role in mesenchymal differentiation and proliferation. The aim of our study was to find a possible link between the immunohistochemical expression of CD10 and CD34 in vMs and their relationship with mutations in the PIK3CA/mTOR signaling pathway. METHODS AND RESULTS: Our study on 58 samples of vMs showed that in endothelial cells, CD10 was significantly expressed in PIK3CA-mutated samples compared with samples without any mutation (p < 0.05), especially and even more consistently when compared with samples with mutation in other pathways (p < 0.0001). Conversely, in the same PIK3CA-mutated samples, CD34 expression in endothelial cells was significantly reduced compared with samples either without any mutation or mutations in other pathways (p < 0.05 and p < 0.0005). Compared with samples with mutations in other pathways, a significant overexpression of endothelial CD10 was also found in samples with TEK/TIE2 mutation, a gene linked to the PIK3CA/mTOR pathway (p < 0.01). However, CD34 expression was not altered. In samples with PIK3CA mutation, the CD10 expression was significantly increased in the stroma compared with samples with TEK/TIE2 gene or other gene mutations (p < 0.05). CONCLUSION: Therefore, the CD10 and CD34 immunohistochemical profile could suggest/support the presence of mutations in the PIK3CA/mTOR pathway in samples of vMs.


Assuntos
Antígenos CD34/análise , Classe I de Fosfatidilinositol 3-Quinases/genética , Células Endoteliais/química , Mutação , Neprilisina/análise , Receptor TIE-2/genética , Malformações Vasculares/genética , Malformações Vasculares/metabolismo , Adolescente , Adulto , Biomarcadores/análise , Criança , Pré-Escolar , Análise Mutacional de DNA , Células Endoteliais/patologia , Feminino , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Lactente , Masculino , Fenótipo , Malformações Vasculares/patologia , Adulto Jovem
10.
Int J Mol Sci ; 21(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906427

RESUMO

Hypoxia, or lack of oxygen, can occur in both physiological (high altitude) and pathological conditions (respiratory diseases). In this narrative review, we introduce high altitude pulmonary edema (HAPE), acute respiratory distress syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD), and Cystic Fibrosis (CF) as examples of maladaptation to hypoxia, and highlight some of the potential mechanisms influencing the prognosis of the affected patients. Among the specific pathways modulated in response to hypoxia, iron metabolism has been widely explored in recent years. Recent evidence emphasizes hepcidin as highly involved in the compensatory response to hypoxia in healthy subjects. A less investigated field in the adaptation to hypoxia is the sphingolipid (SPL) metabolism, especially through Ceramide and sphingosine 1 phosphate. Both individually and in concert, iron and SPL are active players of the (mal)adaptation to physiological hypoxia, which can result in the pathological HAPE. Our aim is to identify some pathways and/or markers involved in the physiological adaptation to low atmospheric pressures (high altitudes) that could be involved in pathological adaptation to hypoxia as it occurs in pulmonary inflammatory diseases. Hepcidin, Cer, S1P, and their interplay in hypoxia are raising growing interest both as prognostic factors and therapeutical targets.


Assuntos
Doença da Altitude/metabolismo , Fibrose Cística/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/fisiopatologia , Ferro/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Esfingolipídeos/metabolismo , Adaptação Fisiológica , Ceramidas/metabolismo , Hepcidinas/metabolismo , Humanos , Hipóxia/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
11.
Cell Physiol Biochem ; 54(1): 110-125, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31999897

RESUMO

BACKGROUND/AIMS: Cystic Fibrosis (CF) is an inherited disease associated with a variety of mutations affecting the CFTR gene. A deletion of phenylalanine 508 (F508) affects more than 70% of patients and results in unfolded proteins accumulation, originating a proteinopathy responsible for inflammation, impaired trafficking, altered metabolism, cholesterol and lipids accumulation, impaired autophagy at the cellular level. Lung inflammation has been extensively related to the accumulation of the lipotoxin ceramide. We recently proved that inhibition of ceramide synthesis by Myriocin reduces inflammation and ameliorates the defence response against pathogens infection, which is downregulated in CF. Here, we aim at demonstrating the mechanisms of Myriocin therapeutic effects in Cystic Fibrosis broncho-epithelial cells. METHODS: The effect of Myriocin treatment, on F508-CFTR bronchial epithelial cell line IB3-1 cells, was studied by evaluating the expression of key proteins and genes involved in autophagy and lipid metabolism, by western blotting and real time PCR. Moreover, the amount of glycerol-phospholipids, triglycerides, and cholesterols, sphingomyelins and ceramides were measured in treated and untreated cells by LC-MS. Finally, Sptlc1 was transiently silenced and the effect on ceramide content, autophagy and transcriptional activities was evaluated as above mentioned. RESULTS: We demonstrate that Myriocin tightly regulates metabolic function and cell resilience to stress. Myriocin moves a transcriptional program that activates TFEB, major lipid metabolism and autophagy regulator, and FOXOs, central lipid metabolism and anti-inflammatory/anti-oxidant regulators. The activity of these transcriptional factors is associated with the induction of PPARs nuclear receptors activity, whose targets are genes involved in lipid transport compartmentalization and oxidation. Transient silencing of SPTCL1 recapitulates the effects induced by Myriocin. CONCLUSION: Cystic Fibrosis bronchial epithelia accumulate lipids, exacerbating inflammation. Myriocin administration: i) activates the transcriptions of genes involved in enhancing autophagy-mediated stress clearance; ii) reduces the content of several lipid species and, at the same time, iii) enhances mitochondrial lipid oxidation. Silencing the expression of Sptlc1 reproduces Myriocin induced autophagy and transcriptional activities, demonstrating that the inhibition of sphingolipid synthesis drives a transcriptional program aimed at addressing cell metabolism towards lipid oxidation and at exploiting autophagy mediated clearance of stress. We speculate that regulating sphingolipid de novo synthesis can relieve from chronic inflammation, improving energy supply and anti-oxidant responses, indicating an innovative therapeutic strategy for CF.


Assuntos
Ácidos Graxos Monoinsaturados/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Esfingolipídeos/metabolismo , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Colesterol/análise , Cromatografia Líquida de Alta Pressão , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Espectrometria de Massas , PPAR gama/genética , PPAR gama/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/análise , Esfingomielinas/análise
12.
Cells ; 9(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861724

RESUMO

Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic stem cells residing in many tissues, including the lung. MSCs have long been regarded as a promising tool for cell-based therapy because of their ability to replace damaged tissue by differentiating into the resident cell and repopulating the injured area. Their ability to release soluble factors and extracellular vesicles has emerged as crucial in the resolution of inflammation and injury. There is a growing literature on the use of MSCs and MSC secretome to hamper inflammation in different lung pathologies, including: asthma, pneumonia, acute lung injury (ALI), pulmonary hypertension, and chronic obstructive pulmonary disease (COPD). However, their potential therapeutic role in the context of Cystic Fibrosis (CF) lung inflammation is still not fully characterized. CF morbidity and mortality are mainly due to progressive lung dysfunction. Lung inflammation is a chronic and unresolved condition that triggers progressive tissue damage. Thus, it becomes even more important to develop innovative immunomodulatory therapies aside from classic anti-inflammatory agents. Here, we address the main features of CF and the implications in lung inflammation. We then review how MSCs and MSC secretome participate in attenuating inflammation in pulmonary pathologies, emphasizing the significant potential of MSCs as new therapeutic approach in CF.


Assuntos
Fibrose Cística/terapia , Células-Tronco Mesenquimais/metabolismo , Pneumonia/terapia , Animais , Fibrose Cística/complicações , Vesículas Extracelulares/metabolismo , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Pneumonia/etiologia
13.
Int J Biochem Cell Biol ; 116: 105622, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31563560

RESUMO

Ceramide is emerging as one of the players of inflammation in lung diseases. However, data on its inflammatory role in Cystic Fibrosis (CF) as part of the extracellular machinery driven by lung mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) are missing. We obtained an in vitro model of CF-MSC by treating control human lung MSCs with a specific CFTR inhibitor. We characterized EVs populations derived from MSCs (ctr EVs) and CF-MSCs (CF-EVs) and analyzed their sphingolipid profile by LC-MS/MS. To evaluate their immunomodulatory function, we treated an in vitro human model of CF, with both EVs populations. Our data show that the two EVs populations differ for the average size, amount, and rate of uptake. CF-EVs display higher ceramide and dihydroceramide accumulation as compared to control EVs, suggesting the involvement of the de novo biosynthesis pathway in the parental CF-MSCs. Higher sphingomyelinase activity in CF-MSCs, driven by inflammation-induced ceramide accumulation, sustains the exocytosis of vesicles that export new formed pro-inflammatory ceramide. Our results suggest that CFTR dysfunction associates with an enhanced sphingolipid metabolism leading to the release of EVs that export the excess of pro-inflammatory Cer to the recipient cells, thus contributing to maintain the unresolved inflammatory status of CF.


Assuntos
Ceramidas/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Vesículas Extracelulares/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Ceramidas/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Exocitose , Vesículas Extracelulares/metabolismo , Expressão Gênica , Humanos , Inflamação , Pulmão/metabolismo , Pulmão/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Modelos Biológicos , Cultura Primária de Células , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Tiazolidinas/farmacologia
14.
Cell Signal ; 51: 110-118, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30076968

RESUMO

BACKGROUND: Mesenchymal stromal/stem cells (MSCs) are multi-potent non-hematopoietic stem cells, residing in most tissues including the lung. MSCs have been used in therapy of chronic inflammatory lung diseases such as Cystic Fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD) but the main beneficial effects reside in the anti-inflammatory potential of the released extracellular vesicles (EVs). Recent reports demonstrate that EVs are effective in animal model of asthma, E.coli pneumonia, lung ischemia-reperfusion, and virus airway infection among others. Despite this growing literature, the EVs effects on CF are largely unexplored. METHODS: We treated IB3-1 cells, an in vitro human model of CF, with EVs derived from human lung MSCs under basal and inflammatory conditions (TNFα stimulation). RESULTS: We demonstrated here that treatment of IB3-1 CF cell line with EVs, down-regulates transcription and protein expression of pro-inflammatory cytokines such as IL-1ß, IL-8, IL-6 under TNFα - stimulated conditions. EVs treatment upregulates the mRNA expression of PPARγ, a transcription factor controlling anti-inflammatory and antioxidant mechanisms via NF-kB and HO-1. Accordingly, NF-kB nuclear translocation is reduced resulting in impairment of the downstream inflammation cascade. In addition, the mRNA of HO-1 is enhanced together with the antioxidant defensive response of the cells. CONCLUSIONS: We conclude that the anti-inflammatory and anti-oxidant efficacy of EVs derived from lung MSCs could be mediated by up-regulation of the PPARγ axis, whose down-stream effectors (NF-kB and HO-1) are well-known modulators of these pathways. GENERAL SIGNIFICANCE: EVs could be a novel strategy to control the hyper-inflamed condition in Cystic Fibrosis.


Assuntos
Fibrose Cística/imunologia , Células Epiteliais/imunologia , Vesículas Extracelulares/fisiologia , Inflamação/imunologia , Células-Tronco Mesenquimais/metabolismo , PPAR gama/imunologia , Células Cultivadas , Fibrose Cística/patologia , Células Epiteliais/patologia , Heme Oxigenase-1/imunologia , Humanos , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Interleucina-8/imunologia , Pulmão/citologia , NF-kappa B/imunologia , Fator de Necrose Tumoral alfa/imunologia
15.
Naunyn Schmiedebergs Arch Pharmacol ; 390(7): 753-759, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28409208

RESUMO

Exposure to cigarette smoke represents the most important risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is characterized by chronic inflammation of the airways, imbalance of proteolytic activity resulting in the destruction of lung parenchyma, alveolar hypoxia, oxidative stress, and apoptosis. Sphingolipids are structural membrane components whose metabolism is altered during stress. Known as apoptosis and inflammation inducer, the sphingolipid ceramide was found to accumulate in COPD airways and its plasma concentration increased as well. The present study investigates the role of sphingolipids in the cigarette smoke-induced damage of human airway epithelial cells. Lung epithelial cells were pre-treated with sphingolipid synthesis inhibitors (myriocin or XM462) and then exposed to a mixture of nicotine, acrolein, formaldehyde, and acetaldehyde, the major toxic cigarette smoke components. The inflammatory and proteolytic responses were investigated by analysis of the mRNA expression (RT-PCR) of cytokines IL-1ß and IL-8, and matrix metalloproteinase-9 and of the protein expression (ELISA) of IL-8. Ceramide intracellular amounts were measured by LC-MS technique. Ferric-reducing antioxidant power test and superoxide anion radical scavenging activity assay were used to assess the antioxidant power of the inhibitors of ceramide synthesis. We here show that ceramide synthesis is enhanced under treatment with a cigarette smoke mixture correlating with increased expression of inflammatory cytokines and matrix metalloproteinase 9. The use of inhibitors of ceramide synthesis protected from smoke induced damages such as inflammation, oxidative stress, and proteolytic imbalance in airways epithelia.


Assuntos
Brônquios/efeitos dos fármacos , Ceramidas/antagonistas & inibidores , Ácidos Graxos Monoinsaturados/farmacologia , Nicotiana/toxicidade , Fumaça/efeitos adversos , Sulfetos/farmacologia , Células Cultivadas , Ceramidas/farmacologia , Ceramidas/fisiologia , Células Epiteliais/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Interleucina-8/genética , Metaloproteinase 9 da Matriz/genética
16.
Naunyn Schmiedebergs Arch Pharmacol ; 390(7): 741-751, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28409209

RESUMO

Retinal degeneration and in particular retinitis pigmentosa (RP) is associated to ceramide (Cer) accumulation and cell death induction. Cer and sphingosine-1-phosphate (S1P) belong to the sphingolipids class and exert a pro-apoptotic and pro-survival activity, respectively. Our aim is to target sphingolipid metabolism by inhibiting S1P lyase that regulates one of the S1P degradation pathways, to reduce retinal photoreceptor damage. The murine 661W cone-like cell line was pretreated with THI, an inhibitor of S1P lyase and exposed to H2O2-induced oxidative stress. 661W cell viability and apoptosis were evaluated by Trypan Blue and TUNEL assay, respectively. Protein expression of mediators of the survival/death pathway (ERK1/2, Akt, Bcl-2, Bax) was analyzed by Western blotting. RT-PCR was performed to establish HO-1 transcript changes and LC-MS analysis to measure Cer intracellular content. THI rescues inhibitory H2O2-effect on 661W cell viability and impairs H2O2-induced apoptosis by increasing Bcl-2/Bax ratio. THI administration counteracts the oxidative stress effects of H2O2 on 661W cells by activating the Nrf2/HO-1 pathway, regulating ERK and Akt phosphorylation levels, and decreasing Cer intracellular content. We conclude that sphingolipid metabolism manipulation can be considered a therapeutic target to promote photoreceptor survival.


Assuntos
Aldeído Liases/antagonistas & inibidores , Imidazóis/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Heme Oxigenase-1/fisiologia , Peróxido de Hidrogênio/toxicidade , Proteínas de Membrana/fisiologia , Camundongos , Fator 2 Relacionado a NF-E2/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/análise , Células Fotorreceptoras Retinianas Cones/metabolismo , Esfingolipídeos/metabolismo , Proteína X Associada a bcl-2/análise
17.
Naunyn Schmiedebergs Arch Pharmacol ; 390(8): 775-790, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28439630

RESUMO

Our aim was to use quantitative and qualitative analyses to gain further insight into the role of ceramide in cystic fibrosis (CF). Sphingolipid ceramide is a known inflammatory mediator, and its accumulation in inflamed lung has been reported in different types of emphysema, chronic obstructive pulmonary disease and CF. CF is caused by a mutation of the chloride channel and associated with hyperinflammation of the respiratory airways and high susceptibility to ongoing infections. We have previously demonstrated that de novo ceramide synthesis is enhanced in lung inflammation and sustains Pseudomonas aeruginosa pulmonary infection in a CF murine model. We used liquid chromatography and matrix-assisted laser desorption/ionization (MALDI) imaging coupled with mass spectrometry, confocal laser scan microscopy and histology analyses to reveal otherwise undecipherable information. We demonstrated that (i) upregulated ceramide synthesis in the alveoli is strictly related to alveolar infection and inflammation, (ii) alveolar ceramide (C16) can be specifically targeted by nanocarrier delivery of the ceramide synthesis inhibitor myriocin (Myr) and (iii) Myr is able to downmodulate pro-inflammatory lyso-PC, favouring an increase in anti-inflammatory PCs. We concluded that Myr modulates alveolar lipids milieu, reducing hyperinflammation and favouring anti-microbial effective response in CF mouse model.


Assuntos
Ceramidas/metabolismo , Fibrose Cística/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Pulmão/efeitos dos fármacos , Infecções por Pseudomonas/metabolismo , Infecções Respiratórias/metabolismo , Animais , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Ácidos Graxos Monoinsaturados/administração & dosagem , Feminino , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Knockout , Nanopartículas/administração & dosagem , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/isolamento & purificação , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia
18.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3210-3220, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27535614

RESUMO

BACKGROUND: CA19.9 antigen has been assumed as an abundant product of cancer cells, due to the reactivity found by immunohistochemical staining of cancer tissues with anti-CA19.9 antibody. METHODS: Expression and biosynthesis of type 1 chain Lewis antigens in the colon and the pancreas were studied by immunodetection in tissue sections and lysates, quantification of glycosyltransferase transcripts, bisulfite sequencing, and chromatin immunoprecipitation assays. RESULTS: CA19.9 was poorly detectable in normal colon mucosa and almost undetectable in colon cancer, while it was easily detected in the pancreatic ducts, together with Lewis b antigen, under both normal and cancer conditions. B3GALT5 transcripts were down-regulated in colon cancer, while they remained expressed in pancreatic cancer. Even ST3GAL3 transcript appeared well expressed in the pancreas but poorly in the colon, irrespective of normal or cancer conditions. CpG islands flanking B3GALT5 native promoter presented an extremely low degree of methylation in pancreatic cancer with respect to colon cancer. In a DNA region about 1kb away from the B3GALT5 retroviral promoter, a stretch of CG dinucleotides presented a methylation pattern potentially associated with transcription. Such a DNA region and the transcription factor binding site provided overlapping results by chromatin immunoprecipitation assays, corroborating the hypothesis. CONCLUSIONS: CA19.9 appears as a physiological product whose synthesis strongly depends on the tissue specific and epigenetically-regulated expression of B3GALT5 and ST3GAL3. GENERAL SIGNIFICANCE: CA19.9 and other Lewis antigens acquire tumor marker properties in the pancreas due to mechanisms giving rise to reabsorption into vessels and elevation in circulating levels.


Assuntos
Antígenos de Neoplasias/metabolismo , Antígeno CA-19-9/metabolismo , Neoplasias do Colo/metabolismo , Galactosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Antígenos do Grupo Sanguíneo de Lewis/metabolismo , Neoplasias Pancreáticas/metabolismo , Sialiltransferases/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/patologia , Ilhas de CpG/genética , DNA/genética , Metilação de DNA/genética , Epigênese Genética , Imunofluorescência , Regulação Enzimológica da Expressão Gênica , Humanos , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , beta-Galactosídeo alfa-2,3-Sialiltransferase
19.
J Cell Mol Med ; 21(5): 871-880, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27860185

RESUMO

The recruitment of bone marrow (BM)-derived progenitor cells to the lung is related to pulmonary remodelling and the pathogenesis of pulmonary hypertension (PH). Although sildenafil is a known target in PH treatment, the underlying molecular mechanism is still elusive. To test the hypothesis that the therapeutic effect of sildenafil is linked to the reduced recruitment of BM-derived progenitor cells, we induced pulmonary remodelling in rats by two-week exposure to chronic hypoxia (CH, 10% oxygen), a trigger of BM-derived progenitor cells. Rats were treated with either placebo (saline) or sildenafil (1.4 mg/kg/day ip) during CH. Control rats were kept in room air (21% oxygen) with no treatment. As expected, sildenafil attenuated the CH-induced increase in right ventricular systolic pressure and right ventricular hypertrophy. However, sildenafil suppressed the CH-induced increase in c-kit+ cells in the adventitia of pulmonary arteries. Moreover, sildenafil reduced the number of c-kit+ cells that colocalize with tyrosine kinase receptor 2 (VEGF-R2) and CD68 (a marker for macrophages), indicating a positive effect on moderating hypoxia-induced smooth muscle cell proliferation and inflammation without affecting the pulmonary levels of hypoxia-inducible factor (HIF)-1α. Furthermore, sildenafil depressed the number of CXCR4+ cells. Collectively, these findings indicate that the improvement in pulmonary haemodynamic by sildenafil is linked to decreased recruitment of BM-derived c-kit+ cells in the pulmonary tissue. The attenuation of the recruitment of BM-derived c-kit+ cells by sildenafil may provide novel therapeutic insights into the control of pulmonary remodelling.


Assuntos
Células da Medula Óssea/patologia , Pulmão/patologia , Citrato de Sildenafila/farmacologia , Células-Tronco/patologia , Animais , Gasometria , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Hipóxia Celular/efeitos dos fármacos , GMP Cíclico/metabolismo , Inflamação/patologia , Masculino , Músculos/efeitos dos fármacos , Músculos/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos Sprague-Dawley , Receptores CXCR4/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Biochim Biophys Acta ; 1860(6): 1089-97, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26922830

RESUMO

BACKGROUND: Fungal infections develop in pulmonary chronic inflammatory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF). The available antifungal drugs may fail to eradicate fungal pathogens, that can invade the lungs and vessels and spread by systemic circulation taking advantage of defective lung immunity. An increased rate of sphingolipid de novo synthesis, leading to ceramide accumulation, was demonstrated in CF and COPD inflamed lungs. The inhibitor of sphingolipid synthesis myriocin reduces inflammation and ameliorates the response against bacterial airway infection in CF mice. Myriocin also inhibits sphingolipid synthesis in fungi and exerts a powerful fungistatic effect. METHODS: We treated Aspergillus fumigatus infected airway epithelial cells with myriocin and we administered myriocin-loaded nanocarriers to A. fumigatus infected mice lung. RESULTS: We demonstrate here that de novo synthesized ceramide mediates the inflammatory response induced by A. fumigatus infection in airway epithelia. CF epithelial cells are chronically inflamed and defective in killing internalized conidia. Myriocin treatment reduced ceramide increase and inflammatory mediator release whereas it upregulated HO1 and NOD2, allowing the recovery of a functional killing of conidia in these cells. Myriocin-loaded nanocarriers, intratracheally administered to mice, significantly reduced both the inflammatory response induced by A. fumigatus pulmonary challenge and fungal lung invasion. CONCLUSIONS: We conclude that inhibition of sphingolipid synthesis can be envisaged as a dual anti-inflammatory and anti-fungal therapy in patients suffering from chronic lung inflammation with compromised immunity. GENERAL SIGNIFICANCE: Myriocin represents a powerful agent for inflammatory diseases and fungal infection.


Assuntos
Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Aspergillus fumigatus , Ceramidas/antagonistas & inibidores , Ácidos Graxos Monoinsaturados/farmacologia , Aspergilose Pulmonar/tratamento farmacológico , Animais , Antifúngicos/uso terapêutico , Linhagem Celular , Ceramidas/biossíntese , Ácidos Graxos Monoinsaturados/uso terapêutico , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Aspergilose Pulmonar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA