Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 23(5): e14106, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38358083

RESUMO

Cerebrovascular dysfunction has been implicated as a major contributor to Alzheimer's Disease (AD) pathology, with cerebral endothelial cell (cEC) stress promoting ischemia, cerebral-blood flow impairments and blood-brain barrier (BBB) permeability. Recent evidence suggests that cardiovascular (CV)/cerebrovascular risk factors, including hyperhomocysteinemia (Hhcy), exacerbate AD pathology and risk. Yet, the underlying molecular mechanisms for this interaction remain unclear. Our lab has demonstrated that amyloid beta 40 (Aß40) species, and particularly Aß40-E22Q (AßQ22; vasculotropic Dutch mutant), promote death receptor 4 and 5 (DR4/DR5)-mediated apoptosis in human cECs, barrier permeability, and angiogenic impairment. Previous studies show that Hhcy also induces EC dysfunction, but it remains unknown whether Aß and homocysteine function through common molecular mechanisms. We tested the hypotheses that Hhcy exacerbates Aß-induced cEC DR4/5-mediated apoptosis, barrier dysfunction, and angiogenesis defects. This study was the first to demonstrate that Hhcy specifically potentiates AßQ22-mediated activation of the DR4/5-mediated extrinsic apoptotic pathway in cECs, including DR4/5 expression, caspase 8/9/3 activation, cytochrome-c release and DNA fragmentation. Additionally, we revealed that Hhcy intensifies the deregulation of the same cEC junction proteins mediated by Aß, precipitating BBB permeability. Furthermore, Hhcy and AßQ22, impairing VEGF-A/VEGFR2 signaling and VEGFR2 endosomal trafficking, additively decrease cEC angiogenic capabilities. Overall, these results show that the presence of the CV risk factor Hhcy exacerbates Aß-induced cEC apoptosis, barrier dysfunction, and angiogenic impairment. This study reveals specific mechanisms through which amyloidosis and Hhcy jointly operate to produce brain EC dysfunction and death, highlighting new potential molecular targets against vascular pathology in comorbid AD/CAA and Hhcy conditions.


Assuntos
Peptídeos beta-Amiloides , Apoptose , Barreira Hematoencefálica , Células Endoteliais , Homocisteína , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Humanos , Peptídeos beta-Amiloides/metabolismo , Homocisteína/farmacologia , Homocisteína/metabolismo , Células Endoteliais/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Neovascularização Patológica/metabolismo , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/complicações
2.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37502936

RESUMO

Aims: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by cerebral amyloid ß (Aß) deposition and tau pathology. The AD-mediated degeneration of the brain neuro-signaling pathways, together with a potential peripheral amyloid accumulation, may also result in the derangement of the peripheral nervous system, culminating in detrimental effects on other organs, including the heart. However, whether and how AD pathology modulates cardiac function, neurotrophins, innervation, and amyloidosis is still unknown. Here, we report for the first time that cardiac remodeling, amyloid deposition, and neuro-signaling dysregulation occur in the heart of Tg2576 mice, a widely used model of AD and cerebral amyloidosis. Methods ad Results: Echocardiographic analysis showed significant deterioration of left ventricle function, evidenced by a decline of both ejection fraction and fraction shortening percentage in 12-month-old Tg2576 mice compared to age-matched WT littermates. Tg2576 mice hearts exhibited an accumulation of amyloid aggregates, including Aß, an increase in interstitial fibrosis and severe cardiac nervous system dysfunction. The transgenic mice also showed a significant decrease in cardiac nerve fiber density, including both adrenergic and regenerating nerve endings. This myocardial denervation was accompanied by a robust reduction in NGF and BDNF protein expression as well as GAP-43 expression (regenerating fibers) in both the brain and heart of Tg2576 mice. Accordingly, cardiomyocytes and neuronal cells challenged with Aß oligomers showed significant downregulation of BDNF and GAP-43, indicating a causal effect of Aß on the loss of cardiac neurotrophic function. Conclusions: Overall, this study uncovers possible harmful effects of AD on the heart, revealing cardiac degeneration induced by Aß through fibrosis and neuro-signaling pathway deregulation for the first time in Tg2576 mice. Our data suggest that AD pathology can cause deleterious effects on the heart, and the peripheral neurotrophic pathway may represent a potential therapeutic target to limit these effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA