Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8002): 212-220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355801

RESUMO

Circular RNAs (circRNAs), which are increasingly being implicated in a variety of functions in normal and cancerous cells1-5, are formed by back-splicing of precursor mRNAs in the nucleus6-10. circRNAs are predominantly localized in the cytoplasm, indicating that they must be exported from the nucleus. Here we identify a pathway that is specific for the nuclear export of circular RNA. This pathway requires Ran-GTP, exportin-2 and IGF2BP1. Enhancing the nuclear Ran-GTP gradient by depletion or chemical inhibition of the major protein exporter CRM1 selectively increases the nuclear export of circRNAs, while reducing the nuclear Ran-GTP gradient selectively blocks circRNA export. Depletion or knockout of exportin-2 specifically inhibits nuclear export of circRNA. Analysis of nuclear circRNA-binding proteins reveals that interaction between IGF2BP1 and circRNA is enhanced by Ran-GTP. The formation of circRNA export complexes in the nucleus is promoted by Ran-GTP through its interactions with exportin-2, circRNA and IGF2BP1. Our findings demonstrate that adaptors such as IGF2BP1 that bind directly to circular RNAs recruit Ran-GTP and exportin-2 to export circRNAs in a mechanism that is analogous to protein export, rather than mRNA export.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular , Transporte de RNA , RNA Circular , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Guanosina Trifosfato/metabolismo , Carioferinas/antagonistas & inibidores , Carioferinas/deficiência , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Nucleares/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , RNA Circular/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Exportina 1/metabolismo , Transporte Proteico
2.
Blood Adv ; 4(7): 1270-1283, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32236527

RESUMO

In eukaryotic cells, messenger RNA (mRNA) molecules are exported from the nucleus to the cytoplasm, where they are translated. The highly conserved protein nuclear RNA export factor1 (Nxf1) is an important mediator of this process. Although studies in yeast and in human cell lines have shed light on the biochemical mechanisms of Nxf1 function, its contribution to mammalian physiology is less clear. Several groups have identified recurrent NXF1 mutations in chronic lymphocytic leukemia (CLL), placing it alongside several RNA-metabolism factors (including SF3B1, XPO, RPS15) whose dysregulation is thought to contribute to CLL pathogenesis. We report here an allelic series of germline point mutations in murine Nxf1. Mice heterozygous for these loss-of-function Nxf1 mutations exhibit thrombocytopenia and lymphopenia, together with milder hematological defects. This is primarily caused by cell-intrinsic defects in the survival of platelets and peripheral lymphocytes, which are sensitized to intrinsic apoptosis. In contrast, Nxf1 mutations have almost no effect on red blood cell homeostasis. Comparative transcriptome analysis of platelets, lymphocytes, and erythrocytes from Nxf1-mutant mice shows that, in response to impaired Nxf1 function, the cytoplasmic representation of transcripts encoding regulators of RNA metabolism is altered in a unique, lineage-specific way. Thus, blood cell lineages exhibit differential requirements for Nxf1-mediated global mRNA export.


Assuntos
Linfopenia , Trombocitopenia , Animais , Células Germinativas , Linfopenia/genética , Camundongos , Mutação , Proteínas de Transporte Nucleocitoplasmático/genética , RNA Viral , Proteínas de Ligação a RNA/genética , Trombocitopenia/genética
3.
Sci Rep ; 8(1): 153, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317722

RESUMO

Medium-chain acyl-Coenzyme A dehydrogenase (MCAD) is involved in the initial step of mitochondrial fatty acid ß-oxidation (FAO). Loss of function results in MCAD deficiency, a disorder that usually presents in childhood with hypoketotic hypoglycemia, vomiting and lethargy. While the disruption of mitochondrial fatty acid metabolism is the primary metabolic defect, secondary defects in mitochondrial oxidative phosphorylation (OXPHOS) may also contribute to disease pathogenesis. Therefore, we examined OXPHOS activity and stability in MCAD-deficient patient fibroblasts that have no detectable MCAD protein. We found a deficit in mitochondrial oxygen consumption, with reduced steady-state levels of OXPHOS complexes I, III and IV, as well as the OXPHOS supercomplex. To examine the mechanisms involved, we generated an MCAD knockout (KO) using human 143B osteosarcoma cells. These cells also exhibited defects in OXPHOS complex function and steady-state levels, as well as disrupted biogenesis of newly-translated OXPHOS subunits. Overall, our findings suggest that the loss of MCAD is associated with a reduction in steady-state OXPHOS complex levels, resulting in secondary defects in OXPHOS function which may contribute to the pathology of MCAD deficiency.


Assuntos
Acil-CoA Desidrogenase/deficiência , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos/metabolismo , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Respiração Celular , Células Cultivadas , DNA Mitocondrial , Fibroblastos/metabolismo , Deleção de Genes , Técnicas de Inativação de Genes , Marcação de Genes , Humanos , Fosforilação Oxidativa , Estabilidade Proteica , Espécies Reativas de Oxigênio
4.
Trends Genet ; 34(4): 279-290, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29329719

RESUMO

Splicing and nuclear export of mRNA are critical steps in the gene expression pathway. While RNA processing factors can perform general, essential functions for intron removal and bulk export of mRNA, emerging evidence highlights that the core RNA splicing and export machineries also display regulatory potential. Here, we discuss recent insights into how this regulatory potential can selectively alter gene expression and regulate important biological processes. We also highlight the participation of RNA processing pathways in the cellular response to DNA damage at multiple levels. These findings have important implications for the contribution of selective mRNA processing and export to the development of human cancers and neurodegenerative disorders.


Assuntos
Carcinogênese/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Splicing de RNA , RNA Mensageiro/genética , Spliceossomos/genética , Transporte Ativo do Núcleo Celular , Carcinogênese/metabolismo , Carcinogênese/patologia , Citoplasma/genética , Citoplasma/metabolismo , Dano ao DNA , Células Eucarióticas/metabolismo , Genoma Humano , Instabilidade Genômica , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Spliceossomos/metabolismo
5.
Am J Cancer Res ; 5(2): 689-701, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25973307

RESUMO

Isoflavonoids have been shown to inhibit tumor proliferation and metastasis by activating cell death pathways. As such, they have been widely studied as potential therapies for cancer prevention. The second generation synthetic isoflavan analogues ME-143 and ME-344 also exhibit anti-cancer effects, however their specific molecular targets have not been completely defined. To identify these targets, we examined the effects of ME-143 and ME-344 on cellular metabolism and found that they are potent inhibitors of mitochondrial oxidative phosphorylation (OXPHOS) complex I (NADH: ubiquinone oxidoreductase) activity. In isolated HEK293T mitochondria, ME-143 and ME-344 reduced complex I activity to 14.3% and 28.6% of control values respectively. In addition to the inhibition of complex I, ME-344 also significantly inhibited mitochondrial complex III (ubiquinol: ferricytochrome-c oxidoreductase) activity by 10.8%. This inhibition of complex I activity (and to a lesser extent complex III activity) was associated with a reduction in mitochondrial oxygen consumption. In permeabilized HEK293T cells, ME-143 and ME-344 significantly reduced the maximum ADP-stimulated respiration rate to 62.3% and 70.0% of control levels respectively in the presence of complex I-linked substrates. Conversely, complex II-linked respiration was unaffected by either drug. We also observed that the inhibition of complex I-linked respiration caused the dissipation of the mitochondrial membrane potential (ΔΨm). Blue native (BN-PAGE) analysis revealed that prolonged loss of ΔΨm results in the destabilization of the native OXPHOS complexes. In particular, treatment of 143B osteosarcoma, HeLa and HEK293T human embryonic kidney cells with ME-344 for 4 h resulted in reduced steady-state levels of mature complex I. Degradation of the complex I subunit NDUFA9, as well as the complex IV (ferrocytochrome c: oxygen oxidoreductase) subunit COXIV, was also evident. The identification of OXPHOS complex I as a target of ME-143 and ME-344 advances our understanding of how these drugs induce cell death by disrupting mitochondrial metabolism, and will direct future work to maximize the anti-cancer capacity of these and other isoflavone-based compounds.

6.
Endocrinology ; 154(4): 1540-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23425966

RESUMO

Glucocorticoids (GCs) have essential roles in the regulation of development, integrated metabolism, and immune and neurological responses, and act primarily via the glucocorticoid receptor (GR). In most cells, GC treatment results in down-regulation of GR mRNA and protein levels via negative feedback mechanisms. However, in GC-treated thymocytes, GR protein levels are maintained at a high level, increasing sensitivity of thymocytes to GCs, resulting in apoptosis termed glucocorticoid-induced cell death (GICD). CD4(+)CD8(+) double-positive thymocytes and thymic natural killer T cells in particular are highly sensitive to GICD. Although GICD is exploited via the use of synthetic GC analogues in the treatment of hematopoietic malignancies, the intracellular molecular pathway of GICD is not well understood. To explore GICD in thymocytes, the authors performed whole genome expression microarray analysis in mouse GR exon 2 null vs wild-type thymus RNA 3 hours after dexamethasone treatment. Identified and validated direct GR targets included P21 and Bim, in addition to an important transcriptional regulator Nfil3, which previously has been associated with GICD and is essential for natural killer cell development in vivo. Immunostaining of NFIL3 in whole thymus localized NFIL3 primarily to the medullary region, and double labeling colocalized NFIL3 to apoptotic cells. In silico analysis revealed a putative GC response element 5 kb upstream of the Nfil3 promoter that is strongly conserved in the rat genome and was confirmed to bind GR by chromatin immunoprecipitation. The knockdown of Nfil3 mRNA levels to 20% of normal using specific small interfering RNAs abrogated GICD, indicating that NFIL3 is required for normal GICD in CTLL-2 T cells.


Assuntos
Apoptose/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Glucocorticoides/fisiologia , Receptores de Glucocorticoides/fisiologia , Timócitos/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Timócitos/metabolismo
7.
Endocrinology ; 151(1): 185-94, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19966186

RESUMO

During the stress response and metabolic fasting, glucocorticoids acting via the glucocorticoid receptor (GR) stimulate hepatic glucose production by activating specific gluconeogenic enzyme target genes. To characterize novel direct GR-regulated hepatic target genes under glucocorticoid control, we performed a whole genome gene expression microarray using dexamethasone-treated GR-null mice. Strongly induced previously characterized genes included phosphoenolpyruvate carboxykinase, serine dehydratase, tyrosine oxygenase, lipin 1, metallothionine, and cdkn1A. Novel induced genes included Ddit4, Fkbp5, Megf9, Sult1e1, and Sult1d1, and all were verified by real-time PCR. Sult1d1, a sulfotransferase, is a member of a large superfamily of detoxification enzymes and has an important role in the inactivation of endogenous dopamine-derived compounds, including the catecholamines. Treatment of primary mouse hepatocytes with dexamethasone for 6 h dramatically increased Sult1d1 mRNA levels, whereas cotreatment with RU-486, a GR antagonist, blocked induction by dexamethasone. Sult1d1 mRNA levels were also increased by dexamethasone in the kidney, a major site of Sult1d1 synthesis. Sult1d1 mRNA was localized by in situ hybridization to renal collecting ducts and was rapidly induced by glucocorticoids in renal inner medullary collecting duct (IMCD3) cells. Hepatic and renal Sult1d1 enzymatic activity was significantly induced in vivo in wild-type mice 6 h after dexamethasone treatment. Chromatin immunoprecipitation assay analysis upstream of the Sult1d1 gene promoter identified a glucocorticoid response element close to the neighboring glucocorticoid-responsive estrogen sulfotransferase Sult1e1 gene, indicating that both genes potentially share a common glucocorticoid response element. These results suggest that Sult1d1 in mice is directly induced by glucocorticoids and may attenuate elevated catecholamine activity during the stress response.


Assuntos
Catecolaminas/metabolismo , Glucocorticoides/farmacologia , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Sulfotransferases/biossíntese , Animais , Células Cultivadas , Dexametasona/farmacologia , Indução Enzimática/efeitos dos fármacos , Perfilação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Rim/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Sulfotransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA