Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
EJNMMI Phys ; 11(1): 43, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722446

RESUMO

BACKGROUND: The purpose of this study was to evaluate how a retrospective correction of the partial volume effect (PVE) in [18F]fluoromisonidazole (FMISO) PET imaging, affects the hypoxia discoverability within a gross tumour volume (GTV). This method is based on recovery coefficients (RC) and is tailored for low-contrast tracers such as FMISO. The first stage was the generation of the scanner's RC curves, using spheres with diameters from 10 to 37 mm, and the same homogeneous activity concentration, positioned in lower activity concentration background. Six sphere-to-background contrast ratios were used, from 10.0:1, down to 2.0:1, in order to investigate the dependence of RC on both the volume and the contrast ratio. The second stage was to validate the recovery-coefficient correction method in a more complex environment of non-spherical lesions of different volumes and inhomogeneous activity concentration. Finally, we applied the correction method to a clinical dataset derived from a prospective imaging trial (DRKS00003830): forty nine head and neck squamous cell carcinoma (HNSCC) cases who had undergone FMISO PET/CT scanning for the quantification of tumour hypoxia before (W0), 2 weeks (W2) and 5 weeks (W5) after the beginning of radiotherapy. Here, PVE was found to cause an underestimation of the activity in small volumes with high FMISO signal. RESULTS: The application of the proposed correction method resulted in a statistically significant increase of both the hypoxic subvolume (171% at W0, 691% at W2 and 4.60 × 103% at W5 with p < 0.001) and the FMISO standardised uptake value (SUV) (27% at W0, 21% at W2 and by 25% at W5 with p < 0.001) within the primary GTV. CONCLUSIONS: The proposed PVE-correction method resulted in a statistically significant increase of the hypoxic fraction (HF) with p < 0.001 and demonstrated results in better agreement with published HF data for HNSCC. To summarise, the proposed RC-based correction method can be a useful tool for a retrospective compensation against PVE.

3.
Eur Radiol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662100

RESUMO

OBJECTIVES: In lung cancer, one of the main limitations for the optimal integration of the biological and anatomical information derived from Positron Emission Tomography (PET) and Computed Tomography (CT) is the time and expertise required for the evaluation of the different respiratory phases. In this study, we present two open-source models able to automatically segment lung tumors on PET and CT, with and without motion compensation. MATERIALS AND METHODS: This study involved time-bin gated (4D) and non-gated (3D) PET/CT images from two prospective lung cancer cohorts (Trials 108237 and 108472) and one retrospective. For model construction, the ground truth (GT) was defined by consensus of two experts, and the nnU-Net with 5-fold cross-validation was applied to 560 4D-images for PET and 100 3D-images for CT. The test sets included 270 4D- images and 19 3D-images for PET and 80 4D-images and 27 3D-images for CT, recruited at 10 different centres. RESULTS: In the performance evaluation with the multicentre test sets, the Dice Similarity Coefficients (DSC) obtained for our PET model were DSC(4D-PET) = 0.74 ± 0.06, improving 19% relative to the DSC between experts and DSC(3D-PET) = 0.82 ± 0.11. The performance for CT was DSC(4D-CT) = 0.61 ± 0.28 and DSC(3D-CT) = 0.63 ± 0.34, improving 4% and 15% relative to DSC between experts. CONCLUSIONS: Performance evaluation demonstrated that the automatic segmentation models have the potential to achieve accuracy comparable to manual segmentation and thus hold promise for clinical application. The resulting models can be freely downloaded and employed to support the integration of 3D- or 4D- PET/CT and to facilitate the evaluation of its impact on lung cancer clinical practice. CLINICAL RELEVANCE STATEMENT: We provide two open-source nnU-Net models for the automatic segmentation of lung tumors on PET/CT to facilitate the optimal integration of biological and anatomical information in clinical practice. The models have superior performance compared to the variability observed in manual segmentations by the different experts for images with and without motion compensation, allowing to take advantage in the clinical practice of the more accurate and robust 4D-quantification. KEY POINTS: Lung tumor segmentation on PET/CT imaging is limited by respiratory motion and manual delineation is time consuming and suffer from inter- and intra-variability. Our segmentation models had superior performance compared to the manual segmentations by different experts. Automating PET image segmentation allows for easier clinical implementation of biological information.

4.
Phys Med ; 114: 103153, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37778209

RESUMO

PURPOSE: To develop a QA procedure, easy to use, reproducible and based on open-source code, to automatically evaluate the stability of different metrics extracted from CT images: Hounsfield Unit (HU) calibration, edge characterization metrics (contrast and drop range) and radiomic features. METHODS: The QA protocol was based on electron density phantom imaging. Home-made open-source Python code was developed for the automatic computation of the metrics and their reproducibility analysis. The impact on reproducibility was evaluated for different radiation therapy protocols, and phantom positions within the field of view and systems, in terms of variability (Shapiro-Wilk test for 15 repeated measurements carried out over three days) and comparability (Bland-Altman analysis and Wilcoxon Rank Sum Test or Kendall Rank Correlation Coefficient). RESULTS: Regarding intrinsic variability, most metrics followed a normal distribution (88% of HU, 63% of edge parameters and 82% of radiomic features). Regarding comparability, HU and contrast were comparable in all conditions, and drop range only in the same CT scanner and phantom position. The percentages of comparable radiomic features independent of protocol, position and system were 59%, 78% and 54%, respectively. The non-significantly differences in HU calibration curves obtained for two different institutions (7%) translated in comparable Gamma Index G (1 mm, 1%, >99%). CONCLUSIONS: An automated software to assess the reproducibility of different CT metrics was successfully created and validated. A QA routine proposal is suggested.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Calibragem , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Software
5.
Med Phys ; 49(7): 4372-4390, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35526220

RESUMO

Nuclear medicine probes turned into the key for the identification and precise location of sentinel lymph nodes and other occult lesions (i.e., tumors) by using the systemic administration of radiotracers. Intraoperative nuclear probes are key in the surgical management of some malignancies as well as in the determination of positive surgical margins, thus reducing the extent and potential surgery morbidity. Depending on their application, nuclear probes are classified into two main categories, namely, counting and imaging. Although counting probes present a simple design, are handheld (to be moved rapidly), and provide only acoustic signals when detecting radiation, imaging probes, also known as cameras, are more hardware-complex and also able to provide images but at the cost of an increased intervention time as displacing the camera has to be done slowly. This review article begins with an introductory section to highlight the relevance of nuclear-based probes and their components as well as the main differences between ionization- (semiconductor) and scintillation-based probes. Then, the most significant performance parameters of the probe are reviewed (i.e., sensitivity, contrast, count rate capabilities, shielding, energy, and spatial resolution), as well as the different types of probes based on the target radiation nature, namely: gamma (γ), beta (ß) (positron and electron), and Cherenkov. Various available intraoperative nuclear probes are finally compared in terms of performance to discuss the state-of-the-art of nuclear medicine probes. The manuscript concludes by discussing the ideal probe design and the aspects to be considered when selecting nuclear-medicine probes.


Assuntos
Neoplasias , Medicina Nuclear , Linfonodo Sentinela , Raios gama , Humanos , Neoplasias/diagnóstico por imagem , Cintilografia
6.
Cancers (Basel) ; 13(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298663

RESUMO

Tumor hypoxia is associated with radiation resistance and can be longitudinally monitored by 18F-fluoromisonidazole (18F-FMISO)-PET/CT. Our study aimed at evaluating radiomics dynamics of 18F-FMISO-hypoxia imaging during chemo-radiotherapy (CRT) as predictors for treatment outcome in head-and-neck squamous cell carcinoma (HNSCC) patients. We prospectively recruited 35 HNSCC patients undergoing definitive CRT and longitudinal 18F-FMISO-PET/CT scans at weeks 0, 2 and 5 (W0/W2/W5). Patients were classified based on peritherapeutic variations of the hypoxic sub-volume (HSV) size (increasing/stable/decreasing) and location (geographically-static/geographically-dynamic) by a new objective classification parameter (CP) accounting for spatial overlap. Additionally, 130 radiomic features (RF) were extracted from HSV at W0, and their variations during CRT were quantified by relative deviations (∆RF). Prediction of treatment outcome was considered statistically relevant after being corrected for multiple testing and confirmed for the two 18F-FMISO-PET/CT time-points and for a validation cohort. HSV decreased in 64% of patients at W2 and in 80% at W5. CP distinguished earlier disease progression (geographically-dynamic) from later disease progression (geographically-static) in both time-points and cohorts. The texture feature low grey-level zone emphasis predicted local recurrence with AUCW2 = 0.82 and AUCW5 = 0.81 in initial cohort (N = 25) and AUCW2 = 0.79 and AUCW5 = 0.80 in validation cohort. Radiomics analysis of 18F-FMISO-derived hypoxia dynamics was able to predict outcome of HNSCC patients after CRT.

7.
Cancers (Basel) ; 13(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672052

RESUMO

The aim of this study is to identify clinically relevant image feature (IF) changes during chemoradiation and evaluate their efficacy in predicting treatment response. Patients with non-small-cell lung cancer (NSCLC) were enrolled in two prospective trials (STRIPE, PET-Plan). We evaluated 48 patients who underwent static (3D) and retrospectively-respiratory-gated 4D PET/CT scans before treatment and a 3D scan during or after treatment. Our proposed method rejects IF changes due to intrinsic variability. The IF variability observed across 4D PET is employed as a patient individualized normalization factor to emphasize statistically relevant IF changes during treatment. Predictions of overall survival (OS), local recurrence (LR) and distant metastasis (DM) were evaluated. From 135 IFs, only 17 satisfied the required criteria of being normally distributed across 4D PET and robust between 3D and 4D images. Changes during treatment in the area-under-the-curve of the cumulative standard-uptake-value histogram (δAUCCSH) within primary tumor discriminated (AUC = 0.87, Specificity = 0.78) patients with and without LR. The resulted prognostic model was validated with a different segmentation method (AUC = 0.83) and in a different patient cohort (AUC = 0.63). The quantification of tumor FDG heterogeneity by δAUCCSH during chemoradiation correlated with the incidence of local recurrence and might be recommended for monitoring treatment response in patients with NSCLC.

8.
Radiat Oncol ; 16(1): 46, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658069

RESUMO

PURPOSE: The value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-positron emission tomography (PET)-radiomics in the outcome assessment of patients with recurrent glioblastoma (rGBM) has not been evaluated until now. The aim of this study was to evaluate whether a prognostic model based on FET-PET radiomics features (RF) is feasible and can identify rGBM patients that would most benefit from re-irradiation. METHODS: We prospectively recruited rGBM patients who underwent FET-PET before re-irradiation (GLIAA-Pilot trial, DRKS00000633). Tumor volume was delineated using a semi-automatic method with a threshold of 1.8 times the standardized-uptake-value of the background. 135 FET-RF (histogram parameters, shape and texture features) were extracted. The analysis involved the characterization of tumor and non-tumor tissue with FET-RF and the evaluation of the prognostic value of FET-RF for time-to-progression (TTP), overall survival (OS) and recurrence location (RL). RESULTS: Thirty-two rGBM patients constituted our cohort. FET-RF discriminated significantly between tumor and non-tumor. The texture feature Small-Zone-Low-Gray-Level-Emphasis (SZLGE) showed the best performance for the prediction of TTP (p = 0.001, satisfying Bonferroni-multiple-test significance level). Additionally, two radiomics signatures could predict TTP (TTP-radiomics-signature, p = 0.001) and OS (OS-radiomics-signature, p = 0.038). SZLGE and the TTP-radiomics-signature additionally predicted RL. Specifically, high values for TTP-radiomics-signature and for SZLGE indicated not only earlier progression, but also a RL within the initial FET-PET active volume. CONCLUSION: Our findings suggest that FET-PET radiomics could contribute to the prognostic assessment and selection of rGBM-patients benefiting from re-irradiation. Trial registration DRKS00000633. Registered on 8th of December in 2010. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00000633 .


Assuntos
Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons/métodos , Reirradiação , Tirosina/análogos & derivados , Adulto , Idoso , Feminino , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Compostos Radiofarmacêuticos/uso terapêutico , Resultado do Tratamento , Tirosina/uso terapêutico
9.
Front Oncol ; 10: 1161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903606

RESUMO

Background: The aim of the study was to evaluate the role of different immunohistochemical and radiomics features in patients with small cell lung cancer (SCLC). Methods: Consecutive patients with histologically proven SCLC with limited (n = 47, 48%) or extensive disease (n = 51, 52%) treated with radiotherapy and chemotherapy at our department were included in the analysis. The expression of different immunohistochemical markers from the initial tissue biopsy, such as CD56, CD44, chromogranin A, synaptophysin, TTF-1, GLUT-1, Hif-1 a, PD-1, and PD-L1, and MIB-1/KI-67 as well as LDH und NSE from the initial blood sample were evaluated. H-scores were additionally generated for CD44, Hif-1a, and GLUT-1. A total of 72 computer tomography (CT) radiomics texture features from a homogenous subgroup (n = 31) of patients were correlated with the immunohistochemistry, the survival (OS), and the progression-free survival (PFS). Results: The median OS, calculated from diagnosis, was 21 months for patients with limited disease and 13 months for patients with extensive disease. The expression of synaptophysin correlated with a better OS (HR 0.546 95% CI 0.308-0.966, p = 0.03). The expression of TTF-1 (HR 0.286, 95% CI: 0.117-0.698, p = 0.006) and a lower GLUT-1 H-score (median = 50, HR: 0.511, 95% CI: 0.260-1.003, p = 0.05) correlated with a better PFS. Patients without chromogranin A expression had a higher risk for developing cerebral metastases (p = 0.02) and patients with PD 1 expression were at risk for developing metastases (p = 0.02). Our radiomics analysis did not reveal a single texture feature that correlated highly with OS or PFS. Correlation coefficients ranged between -0.48 and 0.39 for OS and between -0.46 and 0.38 for PFS. Conclusions: The role of synaptophysin should be further evaluated as synaptophysin-negative patients might profit from treatment intensification. We report an, at most, moderate correlation of radiomics features with overall and progression free survival and no correlation with the expression of different immunohistochemical markers.

10.
Radiother Oncol ; 141: 208-213, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31431386

RESUMO

PURPOSE: Accurate definition of the intraprostatic gross tumor volume (GTV) is crucial for diagnostic and therapeutic approaches in patients with primary prostate cancer (PCa). The optimal methodology for contouring of GTV using Prostate specific membrane antigen positron emission tomography (PSMA-PET) information has not yet been defined. METHODS AND MATERIALS: PCa patients who underwent a [68Ga]PSMA-11-PET/CT followed by radical prostatectomy were prospectively enrolled (n = 20). Six observer teams with different levels of experience and using different PET image scaling techniques performed manual contouring of GTV. Additionally, semi-automatic segmentation of GTVs was performed using SUVmax thresholds of 20-50%. Coregistered histopathological gross tumor volume (GTV-Histo) served as reference. Inter-observer agreement was assessed by calculating the Dice similarity coefficient (DSC). RESULTS: Most contouring methods provided high sensitivity and specificity. For manual delineation, scaling the PET images from SUVmin-max: 0-5 resulted in high sensitivity (>86%). The highest specificity (100%) was obtained by scaling the PET images from SUVmin-max: 0-SUVmax. High interobserver agreement (median DSC 0.8) was observed when using the same PET image scaling technique (PET images SUVmin-max: 0-5). For semi-automatic segmentation, a low SUVmax threshold of 20% optimized sensitivity (SUVmax threshold 20%, 100% sensitivity, 32% of prostatic volume), whereas a higher threshold optimized specificity (SUVmax threshold 40%-50%, 100% specificity). CONCLUSIONS: Contouring of regions with high tracer-uptake resulted in very high specificities and should be used for biopsy guidance. Both manual and semi-automatic approaches using validated SUV scaling (SUVmin-max: 0-5) or thresholding (20%) may provide high sensitivity, and should be considered for PSMA-PET-based focal therapy approaches.


Assuntos
Antígenos de Superfície , Glutamato Carboxipeptidase II , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/patologia , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/diagnóstico por imagem
11.
Theranostics ; 9(9): 2595-2605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31131055

RESUMO

Purpose: To evaluate the performance of radiomic features (RF) derived from PSMA PET for intraprostatic tumor discrimination and non-invasive characterization of Gleason score (GS) and pelvic lymph node status. Patients and methods: Patients with prostate cancer (PCa) who underwent [68Ga]-PSMA-11 PET/CT followed by radical prostatectomy and pelvic lymph node dissection were prospectively enrolled (n=20). Coregistered histopathological gross tumor volume (GTV-Histo) in the prostate served as reference. 133 RF were derived from GTV-Histo and from manually created segmentations of the intraprostatic tumor volume (GTV-Exp). Spearman´s correlation coefficients (ρ) were assessed between RF derived from the different GTVs. We additionally analyzed the differences in RF values for PCa and non-PCa tissues. Furthermore, areas under receiver-operating characteristics curves (AUC) were calculated and uni- and multivariate analyses were performed to evaluate the RF based discrimination of GS 7 and ≥8 disease and of patients with nodal spread (pN1) and non-nodal spread (pN0) in surgical specimen. The results found in the latter analyses were validated by a retrospective cohort of 40 patients. Results: Most RF from GTV-Exp showed strong correlations with RF from GTV-Histo (86% with ρ>0.7). 81% and 76% of RF from GTV-Exp and GTV-Histo significantly discriminated between PCa and non-PCa tissue. The texture feature QSZHGE discriminated between GS 7 and ≥8 considering GTV-Histo (AUC=0.93) and GTV-Exp (prospective cohort: AUC=0.91 / validation cohort: AUC=0.84). QSZHGE also discriminated between pN1 and pN0 disease considering GTV-Histo (AUC=0.85) and GTV-Exp (prospective cohort: AUC=0.87 / validation cohort: AUC=0.85). In uni- and multivariate analyses including patients of both cohorts QSZHGE was a statistically significant (p<0.01) predictor for PCa patients with GS ≥8 tumors and pN1 status. Conclusion: RF derived from PSMA PET discriminated between PCa and non-PCa tissue within the prostate. Additionally, the texture feature QSZHGE discriminated between GS 7 and GS ≥8 tumors and between patients with pN1 and pN0 disease. Our results support the role of RF in PSMA PET as a new tool for non-invasive PCa discrimination and characterization of its biological properties.


Assuntos
Antígenos de Superfície/análise , Glutamato Carboxipeptidase II/análise , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Histocitoquímica , Humanos , Masculino , Gradação de Tumores/métodos , Estudos Prospectivos , Neoplasias da Próstata/cirurgia , Curva ROC , Linfonodo Sentinela/cirurgia
12.
Future Oncol ; 14(8): 737-749, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29521520

RESUMO

Recently, there has been an increase in the imaging modalities available for radiotherapy planning and radiotherapy prognostic outcome: dual energy computed tomography (CT), dynamic contrast enhanced CT, dynamic contrast enhanced magnetic resonance imaging (MRI), diffusion-weighted MRI, positron emission tomography-CT, dynamic contrast enhanced ultrasound, MR spectroscopy and positron emission tomography-MR. These techniques enable more precise gross tumor volume definition than CT alone and moreover allow subvolumes within the gross tumor volume to be defined which may be given a boost dose or an individual voxelized dose prescription may be derived. With increased plan complexity care must be taken to immobilize the patient in an accurate and reproducible manner. Moreover the physical and technical limitations of the entire treatment planning chain need to be well characterized and understood, interdisciplinary collaboration ameliorated (physicians and physicists within nuclear medicine, radiology and radiotherapy) and image protocols standardized.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Medicina de Precisão , Radioterapia (Especialidade)/tendências , Meios de Contraste/uso terapêutico , Imagem de Difusão por Ressonância Magnética , Humanos , Neoplasias/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioterapia (Especialidade)/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
13.
Phys Med Biol ; 60(24): 9227-51, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26576926

RESUMO

PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δφ = 0.3 ± 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC = 0.66 ± 0.04), Positive Predictive Value (PPV = 0.81 ± 0.06) and Sensitivity (Sen. = 0.49 ± 0.05). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol) = 40 ± 30, DSC = 0.71 ± 0.07 and PPV = 0.90 ± 0.13). High accuracy in target tracking position (ΔME) was obtained for experimental and clinical data (ΔME(exp) = 0 ± 3 mm; ΔME(clin) 0.3 ± 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume delineation, position tracking and its robustness on highly irregular target movements, make this algorithm a useful tool for 4D-PET based volume definition for radiotherapy planning of lung cancer and may help to improve the reproducibility in PET quantification for therapy response assessment and prognosis.


Assuntos
Algoritmos , Carcinoma Pulmonar de Células não Pequenas/secundário , Meios de Contraste , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/patologia , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Estudos de Viabilidade , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Movimento (Física) , Imagem Multimodal , Radiocirurgia , Reprodutibilidade dos Testes , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA