Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260619

RESUMO

Background­: Smoking is associated with arrhythmia and sudden cardiac death, but the biological mechanisms remain unclear. Abnormal electrocardiogram (ECG) durations of ventricular repolarization (QT interval), atrial depolarization (P wave), and atrioventricular depolarization (PR interval and segment), predict cardiac arrhythmia and mortality. Objectives­: To elucidate how smoking affects cardiac excitation, we assessed in a nationally representative sample (NHANES III) associations between cotinine, abnormalities in P duration, PR interval, PR segment, rate-corrected QT (QTc), QRS duration, and JT interval, and long-term mortality. Methods­: We analyzed data from 5,633 adults using survey-weighted multinomial logistic regression to estimate associations between tobacco use (>15 ng/ml serum cotinine) and short (<5th percentile) or long (>95th percentile) ECG intervals, relative to reference (5 - 95th percentile). Results­: After adjustment for demographics, risk factors, and conduction-altering medications, smoking was associated with a higher odds of short PR interval, PR segment, and QRS, and long JT. Broader ECG effects of smoking were also assessed by survey-weighted linear regression of continuous cotinine and ECG intervals, which revealed cotinine inversely associated with PR segment and QTc. Over a 22-year follow-up, many ECG abnormalities predicted cardiovascular mortality in smokers, including long JT, QRS, and QTc, and short QRS. Conclusions­: Smoking increases likelihood for rapid atrioventricular conduction, rapid ventricular depolarization, and slow ventricular repolarization. The ventricular electrophysiologic abnormalities associated with smoking also predict cardiovascular mortality in smokers; however, traditional ECG measures of cardiac risk like QTc can overlook these ventricular defects and their independent predictive value in smokers.

2.
Nicotine Tob Res ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38011908

RESUMO

INTRODUCTION: Evidence is mounting that electronic cigarette (e-cig) use induces cardiac sympathetic dominance and electrical dysfunction conducive to arrhythmias and dependent upon nicotine. A variety of nicotine types and concentrations are available in e-cigs, but their relative cardiovascular effects remain unclear. Here we examine how different nicotine forms (racemic, free-base, and salt) and concentrations influence e-cig-evoked cardiac dysfunction and arrhythmogenesis and provide a mechanism for nicotine-salt-induced autonomic imbalance. METHODS: ECG-telemetered C57BL/6J mice were exposed to filtered air (FA) or e-cig aerosols from propylene glycol and vegetable glycerin solvents either without nicotine (vehicle) or with increasing nicotine concentrations (1%, 2.5%, and 5%) for three 9-min puff sessions per concentration. Spontaneous ventricular premature beat (VPB) incidence rates, heart rate, and heart rate variability (HRV) were compared between treatments. Subsequently, to test the role of ß1-adrenergic activation in e-cig-induced cardiac effects, mice were pretreated with atenolol and exposed to either FA or 2.5% nicotine salt. RESULTS: During puffing and washout phases, ≥ 2.5% racemic nicotine reduced heart rate and increased HRV relative to FA and vehicle controls, indicating parasympathetic dominance. Relative to both controls, 5% nicotine salt elevated heart rate and decreased HRV during washout, suggesting sympathetic dominance, and also increased VPB frequency. Atenolol abolished e-cig-induced elevations in heart rate and declines in HRV during washout, indicating e-cig-evoked sympathetic dominance is mediated by ß1-adrenergic stimulation. CONCLUSIONS: Our findings suggest that inhalation of e-cig aerosols from nicotine salt-containing e-liquids could increase the cardiovascular risks of vaping by inducing sympathetic dominance and cardiac arrhythmias. IMPLICATIONS: Exposure to e-cig aerosols containing commercially relevant concentrations of nicotine salts may increase nicotine delivery and impair cardiac function by eliciting ß1-adrenoceptor-mediated sympathoexcitation and provoking ventricular arrhythmias. If confirmed in humans, our work suggests that regulatory targeting of nicotine salts through minimum pH standards or limits on acid additives in e-liquids may mitigate the public health risks of vaping.

3.
Nat Commun ; 13(1): 6088, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284091

RESUMO

E-cigarette use has surged, but the long-term health effects remain unknown. E-cigarette aerosols containing nicotine and acrolein, a combustion and e-cigarette byproduct, may impair cardiac electrophysiology through autonomic imbalance. Here we show in mouse electrocardiograms that acute inhalation of e-cigarette aerosols disturbs cardiac conduction, in part through parasympathetic modulation. We demonstrate that, similar to acrolein or combustible cigarette smoke, aerosols from e-cigarette solvents (vegetable glycerin and propylene glycol) induce bradycardia, bradyarrhythmias, and elevations in heart rate variability during inhalation exposure, with inverse post-exposure effects. These effects are slighter with tobacco- or menthol-flavored aerosols containing nicotine, and in female mice. Yet, menthol-flavored and PG aerosols also increase ventricular arrhythmias and augment early ventricular repolarization (J amplitude), while menthol uniquely alters atrial and atrioventricular conduction. Exposure to e-cigarette aerosols from vegetable glycerin and its byproduct, acrolein, diminish heart rate and early repolarization. The pro-arrhythmic effects of solvent aerosols on ventricular repolarization and heart rate variability depend partly on parasympathetic modulation, whereas ventricular arrhythmias positively associate with early repolarization dependent on the presence of nicotine. Our study indicates that chemical constituents of e-cigarettes could contribute to cardiac risk by provoking pro-arrhythmic changes and stimulating autonomic reflexes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Animais , Feminino , Camundongos , Acroleína/toxicidade , Aerossóis , Arritmias Cardíacas/induzido quimicamente , Glicerol , Mentol , Nicotina , Propilenoglicol , Solventes , Nicotiana , Verduras
4.
Cardiovasc Toxicol ; 21(2): 169-178, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33043409

RESUMO

Smoking is associated with cardiac arrhythmia, stroke, heart failure, and sudden cardiac arrest, all of which may derive from increased sympathetic influence on cardiac conduction system and altered ventricular repolarization. However, knowledge of the effects of smoking on supraventricular conduction, and the role of the sympathetic nervous system in them, remains incomplete. Participants with intermediate-high cardiovascular disease risk were measured for urinary catecholamines and cotinine, and 12-lead electrocardiograms (ECGs) were measured for atrial and atrioventricular conduction times, including P duration, PR interval, and PR segment (lead II), which were analyzed for associations with cotinine by generalized linear models. Statistical mediation analyses were then used to test whether any significant associations between cotinine and atrioventricular conduction were mediated by catecholamines. ECG endpoints and urinary metabolites were included from a total of 136 participants in sinus rhythm. Atrial and atrioventricular conduction did not significantly differ between smokers (n = 53) and non-smokers (n = 83). Unadjusted and model-adjusted linear regressions revealed cotinine significantly and inversely associated with PR interval and PR segment, but not P duration. Dopamine, norepinephrine, and epinephrine all inversely associated with PR interval, whereas only dopamine was also inversely associated with PR segment (p < 0.05). Dopamine and norepinephrine (but not epinephrine) also associated positively with cotinine. Dopamine mediated the relationship between cotinine and PR interval, as well as the relationship between cotinine and PR segment. Smoking is associated with accelerated atrioventricular conduction and elevated urinary dopamine and norepinephrine. Smoking may accelerate atrioventricular nodal conduction via increased dopamine production.


Assuntos
Arritmias Cardíacas/etiologia , Dopamina/urina , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Fumantes , Fumar/efeitos adversos , Potenciais de Ação , Adulto , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/urina , Biomarcadores/urina , Cotinina/urina , Eletrocardiografia , Ex-Fumantes , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Pessoa de Meia-Idade , não Fumantes , Fumar/fisiopatologia , Fumar/urina , Urinálise
5.
Am J Physiol Heart Circ Physiol ; 316(4): H801-H827, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707616

RESUMO

Although substantial evidence shows that smoking is positively and robustly associated with cardiovascular disease (CVD), the CVD risk associated with the use of new and emerging tobacco products, such as electronic cigarettes, hookah, and heat-not-burn products, remains unclear. This uncertainty stems from lack of knowledge on how the use of these products affects cardiovascular health. Cardiovascular injury associated with the use of new tobacco products could be evaluated by measuring changes in biomarkers of cardiovascular harm that are sensitive to the use of combustible cigarettes. Such cardiovascular injury could be indexed at several levels. Preclinical changes contributing to the pathogenesis of disease could be monitored by measuring changes in systemic inflammation and oxidative stress, organ-specific dysfunctions could be gauged by measuring endothelial function (flow-mediated dilation), platelet aggregation, and arterial stiffness, and organ-specific injury could be evaluated by measuring endothelial microparticles and platelet-leukocyte aggregates. Classical risk factors, such as blood pressure, circulating lipoproteins, and insulin resistance, provide robust estimates of risk, and subclinical disease progression could be followed by measuring coronary artery Ca2+ and carotid intima-media thickness. Given that several of these biomarkers are well-established predictors of major cardiovascular events, the association of these biomarkers with the use of new and emerging tobacco products could be indicative of both individual and population-level CVD risk associated with the use of these products. Differential effects of tobacco products (conventional vs. new and emerging products) on different indexes of cardiovascular injury could also provide insights into mechanisms by which they induce cardiovascular harm.


Assuntos
Doenças Cardiovasculares/induzido quimicamente , Produtos do Tabaco/efeitos adversos , Biomarcadores , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/fisiopatologia , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Fatores de Risco , Fumar
6.
Inhal Toxicol ; 27(1): 54-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25600140

RESUMO

CONTEXT: Air pollution exposure affects autonomic function, heart rate, blood pressure and left ventricular function. While the mechanism for these effects is uncertain, several studies have reported that air pollution exposure modifies activity of the carotid body, the major organ that senses changes in arterial oxygen and carbon dioxide levels, and elicits downstream changes in autonomic control and cardiac function. OBJECTIVE: We hypothesized that exposure to acrolein, an unsaturated aldehyde and mucosal irritant found in cigarette smoke and diesel exhaust, would activate the carotid body chemoreceptor response and lead to secondary cardiovascular responses in rats. MATERIALS AND METHODS: Spontaneously hypertensive (SH) rats were exposed once for 3 h to 3 ppm acrolein gas or filtered air in whole body plethysmograph chambers. To determine if the carotid body mediated acrolein-induced cardiovascular responses, rats were pretreated with an inhibitor of cystathionine γ-lyase (CSE), an enzyme essential for carotid body signal transduction. RESULTS: Acrolein exposure induced several cardiovascular effects. Systolic, diastolic and mean arterial blood pressure increased during exposure, while cardiac contractility decreased 1 day after exposure. The cardiovascular effects were associated with decreases in pO2, breathing frequency and expiratory time, and increases in sympathetic tone during exposure followed by parasympathetic dominance after exposure. The CSE inhibitor prevented the cardiovascular effects of acrolein exposure. DISCUSSION AND CONCLUSION: Pretreatment with the CSE inhibitor prevented the cardiovascular effects of acrolein, suggesting that the cardiovascular responses with acrolein may be mediated by carotid body-triggered changes in autonomic tone. (This abstract does not reflect EPA policy.).


Assuntos
Acroleína/toxicidade , Alcinos/farmacologia , Corpo Carotídeo/fisiologia , Cistationina gama-Liase/antagonistas & inibidores , Glicina/análogos & derivados , Animais , Gasometria , Glicina/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/fisiopatologia , Masculino , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Pressão Ventricular/efeitos dos fármacos
7.
Toxicol Sci ; 132(2): 467-77, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23335627

RESUMO

Exposure to air pollution increases the risk of cardiovascular morbidity and mortality, especially in susceptible populations. Despite increased risk, adverse responses are often delayed and require additional stress tests to reveal latent effects of exposure. The goal of this study was to use an episode of "transient hypoxia" as an extrinsic stressor to uncover latent susceptibility to environmental pollutants in a rodent model of hypertension. We hypothesized that exposure to acrolein, an unsaturated aldehyde and mucosal irritant found in cigarette smoke, diesel exhaust, and power plant emissions, would increase cardiopulmonary sensitivity to hypoxia, particularly in hypertensive rats. Spontaneously hypertensive and Wistar Kyoto (normotensive) rats, implanted with radiotelemeters, were exposed once for 3h to 3 ppm acrolein gas or filtered air in whole-body plethysmograph chambers and challenged with a 10% oxygen atmosphere (10min) 24h later. Acrolein exposure increased heart rate, blood pressure, breathing frequency, and minute volume in hypertensive rats and also increased the heart rate variability parameter LF, suggesting a potential role for increased sympathetic tone. Normotensive rats only had increased blood pressure during acrolein exposure. The hypoxia stress test after acrolein exposure revealed increased diastolic blood pressure only in hypertensive rats and increased minute volume and expiratory time only in normotensive rats. These results suggest that hypertension confers exaggerated sensitivity to air pollution and that the hypoxia stress test is a novel tool to reveal the potential latent effects of air pollution exposure.


Assuntos
Acroleína/toxicidade , Poluentes Atmosféricos/toxicidade , Sistema Cardiovascular/fisiopatologia , Hipóxia/fisiopatologia , Animais , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
8.
Toxicol Pathol ; 39(6): 925-37, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21878552

RESUMO

Spontaneously hypertensive heart failure rats (SHHFs) take longer to develop compensated heart failure (HF) and congestive decompensation than common surgical models of HF. Isoproterenol (ISO) infusion can accelerate cardiomyopathy in young SHHFs, while dietary salt loading in hypertensive rats induces cardiac fibrosis, hypertrophy, and--in a minority-congestive HF. By combining ISO with dietary salt loading in young SHHFs, the authors sought a nonsurgical model that is more time--and resource-efficient than any of these factors alone. The authors hypothesized that salt loading would enhance ISO-accelerated cardiomyopathy, promoting fibrosis, hypertrophy, and biochemical characteristics of HF. SHHFs (lean male, 90d) were infused for 4 wk with ISO (2.5 mg/kg/day) or saline. After 2 wk of infusion, a 6-wk high-salt diet (4%, 6%, or 8% NaCl) was initiated. Eight percent salt increased heart weight, HF markers (plasma B-type natriuretic peptide, IL-6), lung lymphocytes, and indicators of lung injury and edema (albumin and protein) relative to control diet, while increasing urine pro-atrial natriuretic peptide relative to ISO-only. High salt also exacerbated ISO-cardiomyopathy and fibrosis. Thus, combining ISO infusion with dietary salt loading in SHHFs holds promise for a new rat HF model that may help researchers to elucidate HF mechanisms and unearth effective treatments.


Assuntos
Cardiomiopatias/patologia , Coração/fisiopatologia , Isoproterenol/toxicidade , Cloreto de Sódio na Dieta/administração & dosagem , Animais , Fator Natriurético Atrial/urina , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/química , Cardiomiopatias/induzido quimicamente , Fibrose , Coração/efeitos dos fármacos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Interleucina-6/sangue , Masculino , Peptídeo Natriurético Encefálico/sangue , Ratos , Ratos Endogâmicos SHR
9.
Environ Health Perspect ; 117(5): 709-15, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19479011

RESUMO

BACKGROUND: Exposure to combustion-derived fine particulate matter (PM) is associated with increased cardiovascular morbidity and mortality especially in individuals with cardiovascular disease, including hypertension. PM inhalation causes several adverse changes in cardiac function that are reflected in the electrocardiogram (ECG), including altered cardiac rhythm, myocardial ischemia, and reduced heart rate variability (HRV). The sensitivity and reliability of ECG-derived parameters as indicators of the cardiovascular toxicity of PM in rats are unclear. OBJECTIVE: We hypothesized that spontaneously hypertensive (SH) rats are more susceptible to the development of PM-induced arrhythmia, altered ECG morphology, and reduced HRV than are Wistar Kyoto (WKY) rats, a related strain with normal blood pressure. METHODS: We exposed rats once by nose-only inhalation for 4 hr to residual oil fly ash (ROFA), an emission source particle rich in transition metals, or to air and then sacrificed them 1 or 48 hr later. RESULTS: ROFA-exposed SH rats developed non-conducted P-wave arrhythmias but no changes in ECG morphology or HRV. We found no ECG effects in ROFA-exposed WKY rats. ROFA-exposed SH rats also had greater pulmonary injury, neutrophil infiltration, and serum C-reactive protein than did ROFA-exposed WKY rats. CONCLUSIONS: These results suggest that cardiac arrhythmias may be an early sensitive indicator of the propensity for PM inhalation to modify cardiovascular function.


Assuntos
Poluentes Atmosféricos/toxicidade , Arritmias Cardíacas/induzido quimicamente , Carbono/toxicidade , Material Particulado/toxicidade , Animais , Cinza de Carvão , Eletrocardiografia , Frequência Cardíaca/efeitos dos fármacos , Exposição por Inalação , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA