Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 95(4): e28688, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36946498

RESUMO

Viral metagenomics has been extensively applied for the identification of emerging or poorly characterized viruses. In this study, we applied metagenomics for the identification of viral infections among pediatric patients with acute respiratory disease, but who tested negative for SARS-CoV-2. Twelve pools composed of eight nasopharyngeal specimens were submitted to viral metagenomics. Surprisingly, in two of the pools, we identified reads belonging to the poorly characterized Malawi polyomavirus (MWPyV). Then, the samples composing the positive pools were individually tested using quantitative polymerase chain reaction for identification of the MWPyV index cases. MWPyV-positive samples were also submitted to respiratory virus panel testing due to the metagenomic identification of different clinically important viruses. Of note, MWPyV-positive samples tested also positive for respiratory syncytial virus types A and B. In this study, we retrieved two complete MWPyV genome sequences from the index samples that were submitted to phylogenetic inference to investigate their viral origin. Our study represents the first molecular and genomic characterization of MWPyV obtained from pediatric patients in South America. The detection of MWPyV in acutely infected infants suggests that this virus might participate (coparticipate) in cases of respiratory symptoms. Nevertheless, future studies based on testing of a larger number of clinical samples and MWPyV complete genomes appear to be necessary to elucidate if this emerging polyomavirus might be clinically important.


Assuntos
COVID-19 , Infecções por Polyomavirus , Polyomavirus , Infecções Respiratórias , Vírus , Lactente , Criança , Humanos , Metagenômica , Brasil/epidemiologia , Malaui/epidemiologia , Filogenia , SARS-CoV-2 , Infecções por Polyomavirus/epidemiologia , Polyomavirus/genética , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia
2.
F1000Res ; 9: 576, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802318

RESUMO

Background: There are no known medicines or vaccines to control the COVID-19 pandemic caused by SARS-CoV-2 (nCoV). Antiviral peptides are superior to conventional drugs and may also be effective against COVID-19. Hence, we investigated the SARS-CoV-2 Spike receptor-binding domain (nCoV-RBD) that interacts with hACE2 for viral attachment and entry. Methods: Three strategies and bioinformatics approaches were employed to design potential nCoV-RBD - hACE2 interaction-blocking peptides that may restrict viral attachment and entry. Firstly, the key residues interacting with nCoV-RBD - hACE2 are identified and hACE2 sequence-based peptides are designed. Second, peptides from five antibacterial peptide databases that block nCoV-RBD are identified; finally, a chimeric peptide design approach is used to design peptides that can bind to key nCoV-RBD residues. The final peptides are selected based on their physiochemical properties, numbers and positions of key residues binding, binding energy, and antiviral properties. Results: We found that: (i) three amino acid stretches in hACE2 interact with nCoV-RBD; (ii) effective peptides must bind to three key positions of nCoV-RBD (Gly485/Phe486/Asn487, Gln493, and Gln498/Thr500/Asn501); (iii) Phe486, Gln493, and Asn501 are critical residues; (iv) AC20 and AC23 derived from hACE2 may block two key critical positions; (iv) DBP6 identified from databases can block the three sites of the nCoV-RBD and interacts with one critical position, Gln498; (v) seven chimeric peptides were considered promising, among which cnCoVP-3, cnCoVP-4, and cnCoVP-7 are the top three; and (vi) cnCoVP-4 meets all the criteria and is the best peptide. Conclusions: To conclude, using three different bioinformatics approaches, we identified 17 peptides that can potentially bind to the nCoV-RBD that interacts with hACE2. Binding these peptides to nCoV-RBD may potentially inhibit the virus to access hACE2 and thereby may prevent the infection. Out of 17, 10 peptides have promising potential and need further experimental validation.


Assuntos
Infecções por Coronavirus , Pandemias , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Pneumonia Viral , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2 , Betacoronavirus , COVID-19 , Humanos , Receptores Virais/química , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA