Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Adv Sci (Weinh) ; 11(14): e2309289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326078

RESUMO

Organoids are becoming increasingly relevant in biology and medicine for their physiological complexity and accuracy in modeling human disease. To fully assess their biological profile while preserving their spatial information, spatiotemporal imaging tools are warranted. While previously developed imaging techniques, such as four-dimensional (4D) live imaging and light-sheet imaging have yielded important clinical insights, these technologies lack the combination of cyclic and multiplexed analysis. To address these challenges, bioorthogonal click chemistry is applied to display the first demonstration of multiplexed cyclic imaging of live and fixed patient-derived glioblastoma tumor organoids. This technology exploits bioorthogonal click chemistry to quench fluorescent signals from the surface and intracellular of labeled cells across multiple cycles, allowing for more accurate and efficient molecular profiling of their complex phenotypes. Herein, the versatility of this technology is demonstrated for the screening of glioblastoma markers in patient-derived human glioblastoma organoids while conserving their viability. It is anticipated that the findings and applications of this work can be broadly translated into investigating physiological developments in other organoid systems.


Assuntos
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Diagnóstico por Imagem , Organoides/patologia
2.
Adv Sci (Weinh) ; 10(34): e2304886, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870204

RESUMO

Intravital microscopy (IVM) allows spatial and temporal imaging of different cell types in intact live tissue microenvironments. IVM has played a critical role in understanding cancer biology, invasion, metastases, and drug development. One considerable impediment to the field is the inability to interrogate the tumor microenvironment and its communication cascades during disease progression and therapeutic interventions. Here, a new implantable perfusion window chamber (PWC) is described that allows high-fidelity in vivo microscopy, local administration of stains and drugs, and longitudinal sampling of tumor interstitial fluid. This study shows that the new PWC design allows cyclic multiplexed imaging in vivo, imaging of drug action, and sampling of tumor-shed materials. The PWC will be broadly useful as a novel perturbable in vivo system for deciphering biology in complex microenvironments.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/patologia , Microscopia Intravital/métodos , Diagnóstico por Imagem , Perfusão
3.
Nat Commun ; 13(1): 4705, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995789

RESUMO

Inflammation is the physiologic reaction to cellular and tissue damage caused by trauma, ischemia, infection, and other pathologic conditions. Elevation of white blood cell count (WBC) and altered levels of other acute phase reactants are cardinal signs of inflammation, but the dynamics of these changes and their resolution are not well established. Here we studied inflammatory recovery from trauma, ischemia, and infection by tracking longitudinal dynamics of clinical laboratory measurements in hospitalized patients. We identified a universal recovery trajectory defined by exponential WBC decay and delayed linear growth of platelet count (PLT). Co-regulation of WBC-PLT dynamics is a fundamental mechanism of acute inflammatory recovery and provides a generic approach for identifying high-risk patients: 32x relative risk (RR) of adverse outcomes for cardiac surgery, 9x RR of death from COVID-19, 9x RR of death from sepsis, and 5x RR of death from myocardial infarction.


Assuntos
COVID-19 , Humanos , Inflamação , Contagem de Leucócitos , Leucócitos , Contagem de Plaquetas
4.
Chembiochem ; 23(20): e202200363, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35921044

RESUMO

Bond-cleavage reactions triggered by bioorthogonal tetrazine ligation have emerged as strategies to chemically control the function of (bio)molecules and achieve activation of prodrugs in living systems. While most of these approaches make use of caged amines, current methods for the release of phenols are limited by unfavorable reaction kinetics or insufficient stability of the Tz-responsive reactants. To address this issue, we have implemented a self-immolative linker that enables the connection of cleavable trans-cyclooctenes (TCO) and phenols via carbamate linkages. Based on detailed investigation of the reaction mechanism with several Tz, revealing up to 96 % elimination after 2 hours, we have developed a TCO-caged prodrug with 750-fold reduced cytotoxicity compared to the parent drug and achieved in situ activation upon Tz/TCO click-to-release.


Assuntos
Compostos Heterocíclicos , Pró-Fármacos , Fenóis , Compostos Heterocíclicos/química , Ciclo-Octanos/química , Aminas , Carbamatos , Linhagem Celular Tumoral
5.
Adv Sci (Weinh) ; 9(24): e2200064, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750648

RESUMO

The ability to observe cells in live organisms is essential for understanding their function in complex in vivo milieus. A major challenge today has been the limited ability to perform higher multiplexing beyond four to six colors to define cell subtypes in vivo. Here, a click chemistry-based strategy is presented for higher multiplexed in vivo imaging in mouse models. The method uses a scission-accelerated fluorophore exchange (SAFE), which exploits a highly efficient bioorthogonal mechanism to completely remove fluorescent signal from antibody-labeled cells in vivo. It is shown that the SAFE-intravital microscopy imaging method allows 1) in vivo staining of specific cell types in dorsal and cranial window chambers of mice, 2) complete un-staining in minutes, 3) in vivo click chemistries at lower (µm) and thus non-toxic concentrations, and 4) the ability to perform in vivo cyclic imaging. The potential utility of the method is demonstrated by 12 color imaging of immune cells in live mice.


Assuntos
Química Click , Corantes Fluorescentes , Animais , Anticorpos , Química Click/métodos , Corantes Fluorescentes/química , Microscopia Intravital , Camundongos , Coloração e Rotulagem
6.
Cancer Cytopathol ; 130(8): 581-594, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35666645

RESUMO

Diagnosing salivary gland tumors (SGTs) through fine-needle aspiration (FNA) biopsies is challenging due to the overlapping cytomorphologic features between benign and malignant tumors. The authors developed an innovative, multiplexed cycling technology for the rapid analyses of single cells obtained from FNA that can facilitate the molecular analyses and diagnosis of SGTs. Antibodies against 29 protein markers associated with 7 SGT subtypes were validated and chemically modified via custom linker-bio-orthogonal probes (FAST). Single-cell homogenates and FNA samples were profiled by FAST cyclic imaging and computational analysis. A prediction model was generated using a training set of 151,926 cells from primary SGTs (N = 26) and validated on a separate cohort (N = 30). Companion biomarker testing, such as neurotrophic tyrosine receptor kinase (NTRK), was also assessed with the FAST technology. The FAST molecular diagnostic assay was able to distinguish between benign and malignant SGTs with an accuracy of 0.86 for single-cell homogenate samples and 0.88 for FNA samples. Profiling of multiple markers as compared to a single marker increased the diagnostic accuracy (0.82 as compared to 0.65-0.74, respectively), independent of the cell number sampled. NTRK expression was also assessed by the FAST assay, highlighting the potential therapeutic application of this technology. Application of the novel multiplexed single-cell technology facilitates rapid biomarker testing from FNA samples at low cost. The customizable and modular FAST-FNA approach has relevance to multiple pathologies and organ systems where cytologic samples are often scarce and/or indeterminate resulting in improved diagnostic workflows and timely therapeutic clinical decision-making.


Assuntos
Neoplasias das Glândulas Salivares , Análise de Célula Única , Biópsia por Agulha Fina , Humanos , Receptores Proteína Tirosina Quinases , Estudos Retrospectivos , Neoplasias das Glândulas Salivares/diagnóstico , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia , Sensibilidade e Especificidade
7.
Adv Biol (Weinh) ; 6(8): e2200030, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675910

RESUMO

Treatment with checkpoint inhibitors can be extraordinarily effective in a fraction of patients, particularly those whose tumors are pre-infiltrated by T cells. In others, efficacy is considerably lower, which has led to interest in developing strategies for sensitization to immunotherapy. Using various colorectal cancer mouse models, it is shown that the use of Traf2 and Nck-interacting protein kinase inhibitors (TNIKi) unexpectedly increases tumor infiltration by PD-1+ CD8+ T cells, thus contributing to tumor control. This appears to happen by two independent mechanisms, by inducing immunogenic cell death and separately by directly activating CD8. The use of TNIKi achieves complete tumor control in 50% of mice when combined with checkpoint inhibitor targeting PD-1. These findings reveal immunogenic properties of TNIKi and indicate that the proportion of colorectal cancers responding to checkpoint therapy can be increased by combining it with immunogenic kinase inhibitors.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Inibidores de Proteínas Quinases , Animais , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Modelos Animais de Doenças , Imunoterapia , Camundongos , Receptor de Morte Celular Programada 1 , Inibidores de Proteínas Quinases/farmacologia
8.
Adv Sci (Weinh) ; 9(20): e2200415, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35508767

RESUMO

High-dimensional analyses of cancers can potentially be used to better define cancer subtypes, analyze the complex tumor microenvironment, and perform cancer cell pathway analyses for drug trials. Unfortunately, integrated systems that allow such analyses in serial fine needle aspirates within a day or at point-of-care currently do not exist. To achieve this, an integrated immunofluorescence single-cell analyzer (i2SCAN) for deep profiling of directly harvested cells is developed. By combining a novel cellular imaging system, highly cyclable bioorthogonal FAST antibody panels, and integrated computational analysis, it is shown that same-day analysis is possible in thousands of harvested cells. It is demonstrated that the i2SCAN approach allows comprehensive analysis of breast cancer samples obtained by fine needle aspiration or core tissues. The method is a rapid, robust, and low-cost solution to high-dimensional analysis of scant clinical specimens.


Assuntos
Neoplasias , Análise de Célula Única , Biópsia por Agulha Fina/métodos , Humanos , Microambiente Tumoral
9.
Sci Adv ; 8(16): eabm3453, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452280

RESUMO

Tumor cell-derived extracellular vesicles (EVs) are being explored as circulating biomarkers, but it is unclear whether bulk measurements will allow early cancer detection. We hypothesized that a single-EV analysis (sEVA) technique could potentially improve diagnostic accuracy. Using pancreatic cancer (PDAC), we analyzed the composition of putative cancer markers in 11 model lines. In parental PDAC cells positive for KRASmut and/or P53mut proteins, only ~40% of EVs were also positive. In a blinded study involving 16 patients with surgically proven stage 1 PDAC, KRASmut and P53mut protein was detectable at much lower levels, generally in <0.1% of vesicles. These vesicles were detectable by the new sEVA approach in 15 of the 16 patients. Using a modeling approach, we estimate that the current PDAC detection limit is at ~0.1-cm3 tumor volume, below clinical imaging capabilities. These findings establish the potential for sEVA for early cancer detection.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
10.
Clin Cancer Res ; 27(17): 4781-4793, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34233961

RESUMO

PURPOSE: There is increasing effort to discover and integrate predictive and/or prognostic biomarkers into treatment algorithms. While tissue-based methods can reveal tumor-immune cell compositions at a single time point, we propose that single-cell sampling via fine needle aspiration (FNA) can facilitate serial assessment of the tumor immune microenvironment (TME) with a favorable risk-benefit profile. EXPERIMENTAL DESIGN: Primary antibodies directed against 20 murine and 25 human markers of interest were chemically modified via a custom linker-bio-orthogonal quencher (FAST) probe. A FAST-FNA cyclic imaging and analysis pipeline were developed to derive quantitative response scores. Single cells were harvested via FNA and characterized phenotypically and functionally both in preclinical and human samples using the newly developed FAST-FNA assay. RESULTS: FAST-FNA samples analyzed manually versus the newly developed deep learning-assisted pipeline gave highly concordant results. Subsequently, an agreement analysis showed that FAST and flow cytometry of surgically resected tumors were positively correlated with an R2 = 0.97 in preclinical samples and an R2 = 0.86 in human samples with the detection of the relevant tumor and immune biomarkers of interest. Finally, the feasibility of applying this minimally invasive approach to analyze the TME during immunotherapy was assessed in patients with cancer revealing local antitumor immune programs. CONCLUSIONS: The FAST-FNA is an innovative technology that combines bio-orthogonal chemistry coupled with a computational analysis pipeline for the comprehensive profiling of single cells obtained through FNA. This is the first demonstration that the complex and rapidly evolving TME during treatment can be accurately and serially measured by simple FNA.


Assuntos
Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/imunologia , Animais , Biópsia por Agulha Fina , Humanos , Camundongos , Fatores de Tempo
11.
medRxiv ; 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34189534

RESUMO

Inflammation is the physiologic reaction to cellular and tissue damage caused by pathologic processes including trauma, infection, and ischemia 1 . Effective inflammatory responses integrate molecular and cellular functions to prevent further tissue damage, initiate repair, and restore homeostasis, while futile or dysfunctional responses allow escalating injury, delay recovery, and may hasten death 2 . Elevation of white blood cell count (WBC) and altered levels of other acute phase reactants are cardinal signs of inflammation, but the dynamics of these changes and their resolution are not established 3,4 . Patient responses appear to vary dramatically with no clearly defined signs of good prognosis, leaving physicians reliant on qualitative interpretations of laboratory trends 4,5 . We retrospectively, observationally studied the human acute inflammatory response to trauma, ischemia, and infection by tracking the longitudinal dynamics of cellular and serum markers in hospitalized patients. Unexpectedly, we identified a conserved pattern of recovery defined by co-regulation of WBC and platelet (PLT) populations. Across all inflammatory conditions studied, recovering patients followed a consistent WBC-PLT trajectory shape that is well-approximated by exponential WBC decay and delayed linear PLT growth. This recovery trajectory shape may represent a fundamental archetype of human physiologic response at the cellular population scale, and provides a generic approach for identifying high-risk patients: 32x relative risk of adverse outcomes for cardiac surgery patients, 9x relative risk of death for COVID-19, and 5x relative risk of death for myocardial infarction.

12.
Angew Chem Int Ed Engl ; 59(17): 6839-6846, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32004403

RESUMO

Rapid analysis of single and scant cell populations is essential in modern diagnostics, yet existing methods are often limited and slow. Herein, we describe an ultra-fast, highly efficient cycling method for the analysis of single cells based on unique linkers for tetrazine (Tz)/trans-cyclooctene (TCO)-mediated quenching. Surprisingly, the quenching reaction rates were more than 3 orders of magnitude faster (t1/2 <1 s) than predicted. This allowed multi-cycle staining and immune cell profiling within an hour, leveraging the accelerated kinetics to open new diagnostic possibilities for rapid cellular analyses.


Assuntos
Imagem Óptica/métodos , Ciclo-Octanos/química , Células HeLa , Humanos , Cinética , Análise de Célula Única
13.
Angew Chem Weinheim Bergstr Ger ; 132(17): 6906-6913, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34366494

RESUMO

Rapid analysis of single and scant cell populations is essential in modern diagnostics, yet existing methods are often limited and slow. Here we describe an ultra-fast, highly efficient cycling method for the analysis of single cells based on unique linkers for tetrazine (Tz) / trans-cyclooctene (TCO) mediated quenching. Surprisingly, the quenching reaction rates were more than 3 orders of magnitude faster (t1/2 < 1 sec) than predicted. This allowed multi-cycle staining and immune cell profiling within an hour, leveraging the accelerated kinetics to open new diagnostic possibilities for rapid cellular analyses.

14.
ACS Omega ; 4(7): 11515-11521, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460257

RESUMO

Emerging point-of-care diagnostic tests capable of analyzing whole mammalian cells often rely on the attachment of harvested cells to glass surfaces for subsequent molecular characterization. We set out to develop and optimize a kit for the diagnosis of lymphoma in low- and middle-income countries where access to advanced healthcare testing is often absent or prone to error. Here, we optimized a process for the lyophilization of neutravidin-coated glass and cocktails of antibodies relevant to lymphoma diagnosis to establish long-term stability of reagents required for point-of-care cell capture technology. Lyophilized glass slides showed no decline in their performance compared to freshly prepared neutravidin glass and preserved capture efficiency for 5 weeks under easily attainable storage conditions. We demonstrate the successful performance of the low-cost, lyophilized kit in a cell capture assay to enable true point-of-care analyses under adverse conditions. We anticipate that the strategy can be expanded to other cancer cell types or cell-derived vesicle analysis.

15.
Nat Commun ; 9(1): 4550, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382095

RESUMO

Serial tissue sampling has become essential in guiding modern targeted and personalized cancer treatments. An alternative to image guided core biopsies are fine needle aspirates (FNA) that yield cells rather than tissues but are much better tolerated and have lower complication rates. The efficient pathway analysis of such cells in the clinic has been difficult, time consuming and costly. Here we develop an antibody-DNA barcoding approach where harvested cells can be rapidly re-stained through the use of custom designed oligonucleotide-fluorophore conjugates. We show that this approach can be used to interrogate drug-relevant pathways in scant clinical samples. Using the PI3K/PTEN/CDK4/6 pathways in breast cancer as an example, we demonstrate how analysis can be performed in tandem with trial enrollment and can evaluate downstream signaling following therapeutic inhibition. This approach should allow more widespread use of scant single cell material in clinical samples.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Transdução de Sinais , Análise de Célula Única/métodos , Anticorpos/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Humanos , Fosfoproteínas/metabolismo , Fosforilação , Resultado do Tratamento
16.
Angew Chem Int Ed Engl ; 53(29): 7531-4, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24915832

RESUMO

We have developed a series of new ultrafluorogenic probes in the blue-green region of the visible-light spectrum that display fluorescence enhancement exceeding 11,000-fold. These fluorogenic dyes integrate a coumarin fluorochrome with the bioorthogonal trans-cyclooctene(TCO)-tetrazine chemistry platform. By exploiting highly efficient through-bond energy transfer (TBET), these probes exhibit the highest brightness enhancements reported for any bioorthogonal fluorogenic dyes. No-wash, fluorogenic imaging of diverse targets including cell-surface receptors in cancer cells, mitochondria, and the actin cytoskeleton is possible within seconds, with minimal background signal and no appreciable nonspecific binding, opening the possibility for in vivo sensing.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Compostos Heterocíclicos/química , Linhagem Celular
17.
J Am Chem Soc ; 128(23): 7630-8, 2006 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-16756320

RESUMO

The exploitation of biological macromolecules, such as nucleic acids, for the fabrication of advanced materials is a promising area of research. Although a greater variety of structural and functional uses can be envisioned for protein-based materials, systematic approaches for their construction have yet to emerge. Consistent with theoretical models of polymer macrocyclization, we have demonstrated that, in the presence of dimeric methotrexate (bisMTX), wild-type Escherichia coli dihydrofolate reductase (DHFR) molecules tethered together by a flexible peptide linker (ecDHFR(2)) are capable of spontaneously forming highly stable cyclic structures with diameters ranging from 8 to 20 nm. The nanoring size is dependent on the length and composition of the peptide linker, on the affinity and conformational state of the dimerizer, and on induced protein-protein interactions. Delineation of these and other rules for the control of protein oligomer assembly by chemical induction provides an avenue to the future design of protein-based materials and nanostructures.


Assuntos
Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Metotrexato/farmacologia , Nanoestruturas/química , Tetra-Hidrofolato Desidrogenase/química , Sítios de Ligação , Cromatografia em Gel , Dimerização , Microscopia Eletrônica de Transmissão , Modelos Teóricos , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Tetra-Hidrofolato Desidrogenase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA