Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 60(8): 3046-3053, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31319418

RESUMO

Purpose: Accumulation of lysosomal waste is linked to neurodegeneration in multiple diseases, and pharmacologic enhancement of lysosomal activity is hypothesized to reduce pathology. An excessive accumulation of lysosomal-associated lipofuscin waste and an elevated lysosomal pH occur in retinal pigment epithelial cells of the ABCA4-/- mouse model of Stargardt's retinal degeneration. As treatment with the P2Y12 receptor antagonist ticagrelor was previously shown to lower lysosomal pH and lipofuscin-like autofluorescence in these cells, we asked whether oral delivery of ticagrelor also prevented photoreceptor loss. Methods: Moderate light exposure was used to accelerate photoreceptor loss in albino ABCA4-/- mice as compared to BALB/c controls. Ticagrelor (0.1%-0.15%) was added to mouse chow for between 1 and 10 months. Photoreceptor function was determined with electroretinograms, while cell survival was determined using optical coherence tomography and histology. Results: Protection by ticagrelor was demonstrated functionally by using the electroretinogram, as ticagrelor-treated ABCA4-/- mice had increased a- and b-waves compared to untreated mice. Mice receiving ticagrelor treatment had a thicker outer nuclear layer, as measured with both optical coherence tomography and histologic sections. Ticagrelor decreased expression of LAMP1, implicating enhanced lysosomal function. No signs of retinal bleeding were observed after prolonged treatment with ticagrelor. Conclusions: Oral treatment with ticagrelor protected photoreceptors in the ABCA4-/- mouse, which is consistent with enhanced lysosomal function. As mouse ticagrelor exposure levels were clinically relevant, the drug may be of benefit in preventing the loss of photoreceptors in Stargardt's disease and other neurodegenerations associated with lysosomal dysfunction.


Assuntos
Degeneração Retiniana/prevenção & controle , Epitélio Pigmentado da Retina/patologia , Ticagrelor/administração & dosagem , Administração Oral , Animais , Modelos Animais de Doenças , Eletrorretinografia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana Lisossomal/biossíntese , Proteínas de Membrana Lisossomal/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias , Antagonistas do Receptor Purinérgico P2Y/administração & dosagem , RNA/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/fisiopatologia , Tomografia de Coerência Óptica , Resultado do Tratamento
2.
Nat Commun ; 10(1): 871, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787295

RESUMO

Chemically modified mRNA is an efficient, biocompatible modality for therapeutic protein expression. We report a first-time-in-human study of this modality, aiming to evaluate safety and potential therapeutic effects. Men with type 2 diabetes mellitus (T2DM) received intradermal injections of modified mRNA encoding vascular endothelial growth factor A (VEGF-A) or buffered saline placebo (ethical obligations precluded use of a non-translatable mRNA control) at randomized sites on the forearm. The only causally treatment-related adverse events were mild injection-site reactions. Skin microdialysis revealed elevated VEGF-A protein levels at mRNA-treated sites versus placebo-treated sites from about 4-24 hours post-administration. Enhancements in basal skin blood flow at 4 hours and 7 days post-administration were detected using laser Doppler fluximetry and imaging. Intradermal VEGF-A mRNA was well tolerated and led to local functional VEGF-A protein expression and transient skin blood flow enhancement in men with T2DM. VEGF-A mRNA may have therapeutic potential for regenerative angiogenesis.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Neovascularização Fisiológica/fisiologia , RNA Mensageiro/efeitos adversos , RNA Mensageiro/uso terapêutico , Pele/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/genética , Adulto , Idoso , Terapia Genética , Humanos , Injeções Intradérmicas , Masculino , Pessoa de Meia-Idade , Placebos/administração & dosagem , RNA Mensageiro/genética , Fluxo Sanguíneo Regional/genética
3.
Sci Rep ; 8(1): 17509, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504800

RESUMO

Capable of mediating efficient transfection and protein production without eliciting innate immune responses, chemically modified mRNA holds great potential to produce paracrine factors at a physiologically beneficial level, in a spatiotemporally controlled manner, and with low toxicity. Although highly promising in cardiovascular medicine and wound healing, effects of this emerging therapeutic on the microvasculature and its bioactivity in disease settings remain poorly understood. Here, we longitudinally and comprehensively characterize microvascular responses to AZD8601, a modified mRNA encoding vascular endothelial growth factor A (VEGF-A), in vivo. Using multi-parametric photoacoustic microscopy, we show that intradermal injection of AZD8601 formulated in a biocompatible vehicle results in pronounced, sustained and dose-dependent vasodilation, blood flow upregulation, and neovessel formation, in striking contrast to those induced by recombinant human VEGF-A protein, a non-translatable variant of AZD8601, and citrate/saline vehicle. Moreover, we evaluate the bioactivity of AZD8601 in a mouse model of diabetic wound healing in vivo. Using a boron nanoparticle-based tissue oxygen sensor, we show that sequential dosing of AZD8601 improves vascularization and tissue oxygenation of the wound bed, leading to accelerated re-epithelialization during the early phase of diabetic wound healing.


Assuntos
Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/patologia , Microvasos/metabolismo , RNA Mensageiro/genética , Fator A de Crescimento do Endotélio Vascular/genética , Cicatrização/genética , Animais , Angiopatias Diabéticas/diagnóstico por imagem , Modelos Animais de Doenças , Humanos , Camundongos , Microvasos/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/genética , Consumo de Oxigênio , Imagem com Lapso de Tempo , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA