Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bioorg Chem ; 129: 106204, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36306699

RESUMO

The renin-angiotensin system (RAS) is a key regulator of human arterial pressure. Several of its effects are modulated by angiotensin II, an octapeptide originating from the action of angiotensin-I converting enzyme (ACE) on the decapeptide angiotensin-I. ACE possess two active sites (nACE and cACE) that have their own kinetic and substrate specificities. ACE inhibitors are widely used as the first-line treatment for hypertension and other heart-related diseases, but because they inactivate both ACE domains, their use is associated with serious side effects. Thus, the search for domain-specific ACE inhibitors has been the focus of intense research. Angiotensin (1-7), a peptide that also belongs to the RAS, acts as a substrate of nACE and an inhibitor of cACE. We have synthetized 15 derivatives of Ang (1-7), sequentially removing the N-terminal amino acids and modifying peptides extremities, to find molecules with improved selectivity and inhibition properties. Ac-Ang (2-7)-NH2 is a good ACE inhibitor, resistant to cleavage and with improved cACE selectivity. Molecular dynamics simulations provided a model for this peptide's selectivity, due to Val3 and Tyr4 interactions with ACE subsites. Val3 has an important interaction with the S3 subsite, since its removal greatly reduced peptide-enzyme interactions. Taken together, our findings support ongoing studies using insights from the binding of Ac-Ang (2-7)-NH2 to develop effective cACE inhibitors.


Assuntos
Angiotensina I , Peptidil Dipeptidase A , Humanos , Peptidil Dipeptidase A/metabolismo , Angiotensina I/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Peptídeos/farmacologia
2.
Pathogens ; 10(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34832608

RESUMO

Plasmodium falciparum, the most virulent of the human malaria parasite, is responsible for high mortality rates worldwide. We studied the M1 alanyl-aminopeptidase of this protozoan (PfA-M1), which is involved in the final stages of hemoglobin cleavage, an essential process for parasite survival. Aiming to help in the rational development of drugs against this target, we developed a new strain of P. falciparum overexpressing PfA-M1 without the signal peptide (overPfA-M1). The overPfA-M1 parasites showed a 2.5-fold increase in proteolytic activity toward the fluorogenic substrate alanyl-7-amido-4-methylcoumarin, in relation to the wild-type group. Inhibition studies showed that overPfA-M1 presented a lower sensitivity against the metalloaminopeptidase inhibitor bestatin and to other recombinant PfA-M1 inhibitors, in comparison with the wild-type strain, indicating that PfA-M1 is a target for the in vitro antimalarial activity of these compounds. Moreover, overPfA-M1 parasites present a decreased in vitro growth, showing a reduced number of merozoites per schizont, and also a decrease in the iRBC area occupied by the parasite in trophozoite and schizont forms when compared to the controls. Interestingly, the transgenic parasite displays an increase in the aminopeptidase activity toward Met-, Ala-, Leu- and Arg-7-amido-4-methylcoumarin. We also investigated the potential role of calmodulin and cysteine proteases in PfA-M1 activity. Taken together, our data show that the overexpression of PfA-M1 in the parasite cytosol can be a suitable tool for the screening of antimalarials in specific high-throughput assays and may be used for the identification of intracellular molecular partners that modulate their activity in P. falciparum.

3.
Int J Biol Macromol ; 167: 676-686, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33285201

RESUMO

Phytocystatins are tight-binding cysteine protease inhibitors produced by plants. The first phytocystatin described was isolated from Oryza sativa and, since then, cystatins from several plant species were reported, including from sugarcane. Sugarcane cystatins were unraveled in Sugarcane EST project database, after sequencing of cDNA libraries from various sugarcane tissues at different developmental stages and six sugarcane cystatins were cloned, expressed and characterized (CaneCPI-1 to CaneCPI-6). These recombinant proteins were produced in different expression systems and inhibited several cysteine proteases, including human cathepsins B and L, which can be involved in pathologies, such as cancer. In this review, we summarize a comprehensive history of all sugarcane cystatins, presenting an updated phylogenetic analysis; chromosomal localization, and genomic organization. We also present protein docking of CaneCPI-5 in the active site of human cathepsin B, insights about canecystatins structures; recombinant expression in different systems, comparison of their inhibitory activities against human cysteine cathepsins B, K, L, S, V, falcipains from Plasmodium falciparum and a cathepsin L-like from the sugarcane weevil Sphenophorus levis; and enlighten their potential and current applications in agriculture and health.


Assuntos
Biotecnologia , Cistatinas/química , Cistatinas/farmacologia , Saccharum/química , Sequência de Aminoácidos , Biotecnologia/métodos , Cistatinas/genética , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas , Regulação da Expressão Gênica de Plantas , Humanos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Proteínas Recombinantes , Saccharum/classificação , Saccharum/genética , Saccharum/metabolismo , Relação Estrutura-Atividade
4.
Int J Biol Macromol ; 158: 375-383, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32360970

RESUMO

Huanglongbing (HLB) is a devastating citrus disease associated with Candidatus Liberibacter asiaticus (CLas) and is transmitted by the psyllid Diaphorina citri Kuwayama. Diaphorina citri belongs to Hemiptera order, which has cysteine peptidases as the most abundant proteolytic enzymes present in digestive tract. As cysteine peptidases are involved in different insect development processes, this class of enzymes has acquired biotechnological importance. In this context, we identified a cathepsin L-like (DCcathL1) from the Diaphorina citri transcriptome database and expressed the enzyme in E. coli. Quantitative real-time RT-PCR was conducted to determine DCcathL1 gene expression in different parts and developmental phases of the insect. We observed that DCcathL1 expression in the gut was 2.59 and 2.87-fold higher than in the head and carcass, respectively. Furthermore, DCcathL1 expression was greater in eggs than in nymphs and adults, suggesting a putative role of the enzyme in the embryonic development. In addition, enzymatic inhibitory activity using four recombinant Citrus cystatins were performed. Among them, CsinCPI-2 was the strongest DCcathL1 inhibitor with a Ki value of 0.005 nM. Our results may contribute in the development of strategies for D. citri control, such as silencing the DCcathL1 gene and the use of transgenic plants that overexpress peptidase inhibitors.

5.
Rev. cuba. med. trop ; 71(2): e350, mayo.-ago. 2019. graf
Artigo em Inglês | LILACS, CUMED | ID: biblio-1093563

RESUMO

It has been demonstrated that proteases play crucial roles in Plasmodium falciparum infection and therefore have been considered as targets for the development of new therapeutic drugs. The aim of this study was to describe the specific proteolytic activity profile in all blood stages of P. falciparum isolated parasites in order to explore new antimalarial options. For this purpose, we used the fluorogenic substrate Z-Phe-Arg-MCA (Z: carbobenzoxy, MCA: 7-amino-4-methyl coumarine) and classic inhibitors for the different classes of proteolytic enzymes, such as phenylmethylsulfonyl fluoride (PMSF), 1.10-phenantroline, pepstatin A and E64 to study the inhibition profiles. As expected, due to the high metabolic activity in mature stages, the substrate was mostly degraded in the trophozoite and schizont, with specific activities ~ 20 times higher than in early stages (merozoite/rings). The major actors in substrate hydrolysis were cysteine proteases, as confirmed by the complete hydrolysis inhibition with E64 addition. Proteolytic activity was also inhibited in the presence of PMSF in all but the schizont stage. However, PMSF inhibition was the result of unspecific interaction with cysteine proteases as demonstrated by reversion of inhibition by dithiotreitol (DTT), indicating that serine protease activity is very low or null. To our knowledge, this is the first report aiming to describe the proteolytic profile of P. falciparum isolated parasites at all the erythrocytic cycle stages. The results and protocol described herein can be useful in the elucidation of stage specific action of proteolysis-inhibiting drugs and aid in the development of antimalarial compounds with protease inhibitory activity(AU)


e ha demostrado que las proteasas desempeñan funciones vitales en la infección por Plasmodium falciparum, y por lo tanto se consideran dianas en la elaboración de nuevos medicamentos terapéuticos. El objetivo del estudio era describir el perfil de actividad proteolítica específica de todas las etapas sanguíneas de parásitos aislados de P. falciparum con vistas a explorar nuevas opciones antimaláricas. Con ese propósito, utilizamos el sustrato fluorogénico Z-Phe-Arg-AMC (Z: carbobenzoxi, AMC: 7-amino-4-metilcumarina) e inhibidores clásicos para las diferentes clases de enzimas proteolíticas, tales como el fluoruro de fenilmetilsulfonilo (PMSF), 1,10-fenantrolina, pepstatina A y E64 para estudiar los perfiles de inhibición. Como se esperaba, debido a la elevada actividad metabólica de las etapas de madurez, el sustrato fue degradado mayormente en el trofozoíto y el esquizonte, con actividad específica ~ 20 veces superior a la de las etapas tempranas (merozoíto/ anillos). Los principales actores en la hidrólisis del sustrato fueron las cisteínas proteasas, lo que fue confirmado por la inhibición completa de la hidrólisis con la adición de E64. La actividad proteolítica también fue inhibida en presencia de PMSF en todas las etapas excepto el esquizonte. Sin embargo, la inhibición del PMSF fue resultado de una interacción inespecífica con las cisteínas proteasas, según lo demuestra la reversión de la inhibición con el ditiotreitol (DTT), lo que indica que la actividad de la serina proteasa es muy baja o inexistente. Que sepamos, este es el primer informe dirigido a describir el perfil proteolítico de parásitos aislados de P. falciparum en todas las etapas del ciclo eritrocítico. Los resultados y el protocolo que aquí se describen pueden ser útiles para dilucidar la acción específica de los medicamentos inhibidores de proteólisis en cada etapa, así como contribuir al desarrollo de compuestos antimaláricos con actividad inhibidora de la proteasa(AU)


Assuntos
Humanos , Masculino , Feminino , Peptídeo Hidrolases/uso terapêutico , Plasmodium falciparum/metabolismo , Antimaláricos/uso terapêutico
6.
Parasitol Int ; 67(2): 233-236, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29288140

RESUMO

Malaria is a disease caused by Plasmodium parasites that affects hundreds of millions of people. Plasmodium proteases are involved in invasion, erythrocyte egress and degradation of host proteins. Falcipains are well-studied cysteine peptidases located in P. falciparum food vacuoles that participate in hemoglobin degradation. Cystatins are natural cysteine protease inhibitors that are implicated in a wide range of regulatory processes. Here, we report that a cystatin from sugarcane, CaneCPI-4, is selectively internalized into P. falciparum infected erythrocytes and is not processed by the parasite proteolytic machinery. Furthermore, we demonstrated the inhibition of P. falciparum cysteine proteases by CaneCPI-4, suggesting that it can exert inhibitory functions inside the parasites. The inhibition of the proteolytic activity of parasite cells is specific to this cystatin, as the addition of an anti-CaneCPI-4 antibody completely abolished the inhibition. We extended the studies to recombinant falcipain-2 and falcipain-3 and demonstrated that CaneCPI-4 strongly inhibits these enzymes, with IC50 values of 12nM and 42nM, respectively. We also demonstrated that CaneCPI-4 decreased the hemozoin formation in the parasites, affecting the parasitemia. Taken together, this study identified a natural molecule as a potential antimalarial that specifically targets falcipains and also contributes to a better understanding of macromolecule acquisition by Plasmodium falciparum infected RBCs.


Assuntos
Antimaláricos/farmacologia , Cistatinas/farmacologia , Cisteína Proteases/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Proteínas de Plantas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Antimaláricos/isolamento & purificação , Cistatinas/química , Cisteína Endopeptidases/efeitos dos fármacos , Cisteína Endopeptidases/genética , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/isolamento & purificação , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Eritrócitos/fisiologia , Hemeproteínas/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Proteínas de Plantas/química , Plasmodium falciparum/enzimologia
7.
Oncoimmunology ; 5(7): e1178420, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27622031

RESUMO

Despite the recent approval of new agents for metastatic melanoma, its treatment remains challenging. Moreover, few available immunotherapies induce a strong cellular immune response, and selection of the correct immunoadjuvant is crucial for overcoming this obstacle. Here, we studied the immunomodulatory properties of arazyme, a bacterial metalloprotease, which was previously shown to control metastasis in a murine melanoma B16F10-Nex2 model. The antitumor activity of arazyme was independent of its proteolytic activity, since heat-inactivated protease showed comparable properties to the active enzyme; however, the effect was dependent on an intact immune system, as antitumor properties were lost in immunodeficient mice. The protective response was IFNγ-dependent, and CD8(+) T lymphocytes were the main effector antitumor population, although B and CD4(+) T lymphocytes were also induced. Macrophages and dendritic cells were involved in the induction of the antitumor response, as arazyme activation of these cells increased both the expression of surface activation markers and proinflammatory cytokine secretion through TLR4-MyD88-TRIF-dependent, but also MAPK-dependent pathways. Arazyme was also effective in the murine breast adenocarcinoma 4T1 model, reducing primary and metastatic tumor development, and prolonging survival. To our knowledge, this is the first report of a bacterial metalloprotease interaction with TLR4 and subsequent receptor activation that promotes a proinflammatory and tumor protective response. Our results show that arazyme has immunomodulatory properties, and could be a promising novel alternative for metastatic melanoma treatment.

8.
Int J Biochem Cell Biol ; 77(Pt A): 155-164, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270332

RESUMO

Proteolytic enzymes mediate the activation or inactivation of many physiologic and pathologic processes. The PHEX gene (Phosphate-regulating gene with homologies to endopeptidase on the X chromosome) encodes a metallopeptidase, which is mutated in patients with a prevalent form (1:20,000) of inherited rickets-X-linked hypophosphatemia (XLH). XLH shows growth retardation, hypophosphatemia, osteomalacia, and defective renal phosphate reabsorption and metabolism of vitamin D. Most PHEX studies have focused on bone, and recently we identified osteopontin (OPN) as the first protein substrate for PHEX, demonstrating in the murine model of XLH (Hyp mice) an increase in OPN that contributes to the osteomalacia. Besides its role in bone mineralization, OPN is expressed in many tissues, and therein has different functions. In tumor biology, OPN is known to be associated with metastasis. Here, we extend our PHEX-OPN studies to investigate PHEX expression in a squamous cell carcinoma (SCC) cell line and its possible involvement in modulating OPN function. Real-time PCR showed PHEX-OPN co-expression in SCC cells, with sequencing of the 22 exons showing no mutation of the PHEX gene. Although recombinant PHEX hydrolyze SCC-OPN fragments, unlike in bone cells, SCC-PHEX protein was not predominantly at the plasma membrane. Enzymatic activity assays, FACs and immunoblotting analyses demonstrated that membrane PHEX is degraded by cysteine proteases and the decreased PHEX activity could contribute to inappropriate OPN regulation. These results highlight for the first time PHEX in tumor biology.


Assuntos
Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Osteopontina/metabolismo , Endopeptidase Neutra Reguladora de Fosfato PHEX/metabolismo , Proteólise , Membrana Celular/metabolismo , Cisteína Proteases/metabolismo , Ativação Enzimática , Humanos , Osteopontina/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Parasitol Int ; 65(1): 20-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26384965

RESUMO

Hypervalent organotellurium compounds (organotelluranes) have shown several promising applications, including their use as potent and selective cysteine protease inhibitors and antiprotozoal agents. Here, we report the antimalarial activities of three organotellurane derivatives (RF05, RF07 and RF19) in two Plasmodium falciparum strains (CQS 3D7 and CQR W2), which demonstrated significant decreases in parasitemia in vitro. The inhibition of intracellular P. falciparum proteases by RF05, RF07 and RF19 was determined and the IC50 values were 3.7±1.0µM, 1.1±0.2µM and 0.2±0.01µM, respectively. Using an assay performed in the presence of the ER Ca(2+)-ATPase inhibitor we showed that the main enzymatic targets were cysteine proteases stimulated by calcium (calpains). None of the compounds tested caused haemolysis or a significant decrease in endothelial cell viability in the concentration range used for the inhibition assay. Taken together, the results suggest promising compounds for the development of antimalarial drugs.


Assuntos
Antimaláricos/farmacologia , Calpaína/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Compostos Organometálicos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Telúrio/farmacologia , Antimaláricos/toxicidade , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Cisteína Proteinase/toxicidade , Descoberta de Drogas , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/parasitologia , Humanos , Concentração Inibidora 50 , Malária Falciparum/tratamento farmacológico , Compostos Organometálicos/toxicidade , Telúrio/toxicidade
10.
Exp Eye Res ; 134: 39-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25795052

RESUMO

Corneal avascularization is essential for normal vision. Several antiangiogenic factors were identified in cornea such as endostatin and angiostatin. Cathepsin V, which is highly expressed in the cornea, can hydrolyze human plasminogen to release angiostatin fragments. Herein, we describe a detailed investigation of the expression profile of cathepsins B, L, S and V in the human cornea and the role of cysteine peptidases in modulating angiogenesis both in vitro and in vivo. We used various methodological tools for this purpose, including real-time PCR, SDS-PAGE, western blotting, catalytic activity assays, cellular assays and induction of corneal neovascularity in rabbit eyes. Human corneal enzymatic activity assays revealed the presence of cysteine proteases that were capable of processing endogenous corneal plasminogen to produce angiostatin-like fragments. Comparative real-time analysis of cathepsin B, L, S and V expression revealed that cathepsin V was the most highly expressed, followed by cathepsins L, B and S. However, cathepsin V depletion revealed that this enzyme is not the major cysteine protease responsible for plasminogen degradation under non-pathological conditions. Furthermore, western blotting analysis indicated that only cathepsins B and S were present in their enzymatically active forms. In vivo analysis of angiogenesis demonstrated that treatment with the cysteine peptidase inhibitor E64 caused a reduction in neovascularization. Taken together, our results show that human corneal cysteine proteases are critically involved in angiogenesis.


Assuntos
Catepsinas/metabolismo , Neovascularização da Córnea/enzimologia , Modelos Animais de Doenças , Animais , Western Blotting , Catepsinas/genética , Neovascularização da Córnea/patologia , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica/fisiologia , Humanos , Plasminogênio/metabolismo , RNA Mensageiro/genética , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Doadores de Tecidos
11.
Anal Biochem ; 468: 22-7, 2015 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-25281458

RESUMO

In the intraerythrocytic trophozoite stages of Plasmodium falciparum, the calcium-dependent cysteine protease calpain (Pf-calpain) has an important role in the parasite calcium modulation and cell development. We established specific conditions to follow by confocal microscopy and spectrofluorimetry measurements the intracellular activity of Pf-calpain in live cells. The catalytic activity was measured using the fluorogenic Z-Phe-Arg-MCA (where Z is carbobenzoxy and MCA is 4-methylcoumaryl-7-amide). The calmodulin inhibitor calmidazolium and the sarcoplasmic reticulum calcium ATPase inhibitor thapsigargin were used for modifications in the cytosolic calcium concentrations that persisted in the absence of extracellular calcium. The observed calcium-dependent peptidase activity was greatly inhibited by specific cysteine protease inhibitor E-64 and by the selective calpain inhibitor ALLN (N-acetyl-l-leucyl-l-leucyl-l-norleucinal). Taken together, we observed that intracellular Pf-calpain can be selectively detected and is the main calcium-dependent protease in the intraerythrocytic stages of the parasite. The method described here can be helpful in cell metabolism studies and antimalarial drug screening.


Assuntos
Calpaína/metabolismo , Plasmodium chabaudi/enzimologia , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Animais , Cálcio/metabolismo , Calpaína/análise , Calpaína/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Leupeptinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Proteínas de Protozoários/análise , Proteínas de Protozoários/antagonistas & inibidores , Espectrometria de Fluorescência
12.
PLoS One ; 9(4): e96141, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788523

RESUMO

The increased incidence, high rates of mortality and few effective means of treatment of malignant melanoma, stimulate the search for new anti-tumor agents and therapeutic targets to control this deadly metastatic disease. In the present work the antitumor effect of arazyme, a natural bacterial-derived metalloprotease secreted by Serratia proteomaculans, was investigated. Arazyme significantly reduced the number of pulmonary metastatic nodules after intravenous inoculation of B16F10 melanoma cells in syngeneic mice. In vitro, the enzyme showed a dose-dependent cytostatic effect in human and murine tumor cells, and this effect was associated to the proteolytic activity of arazyme, reducing the CD44 expression at the cell surface, and also reducing in vitro adhesion and in vitro/in vivo invasion of these cells. Arazyme treatment or immunization induced the production of protease-specific IgG that cross-reacted with melanoma MMP-8. In vitro, this antibody was cytotoxic to tumor cells, an effect increased by complement. In vivo, arazyme-specific IgG inhibited melanoma lung metastasis. We suggest that the antitumor activity of arazyme in a preclinical model may be due to a direct cytostatic activity of the protease in combination with the elicited anti-protease antibody, which cross-reacts with MMP-8 produced by tumor cells. Our results show that the bacterial metalloprotease arazyme is a promising novel antitumor chemotherapeutic agent.


Assuntos
Metaloproteinase 8 da Matriz/imunologia , Melanoma Experimental/patologia , Metaloproteases/farmacologia , Metástase Neoplásica/prevenção & controle , Serratia/enzimologia , Animais , Sequência de Bases , Reações Cruzadas , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
13.
Am J Physiol Renal Physiol ; 306(8): F855-63, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24523384

RESUMO

The physiological roles of ANG-(3-4) (Val-Tyr), a potent ANG II-derived peptide, remain largely unknown. The present study 1)investigates whether ANG-(3-4) modulates ouabain-resistant Na(+)-ATPase resident in proximal tubule cells and 2) verifies whether its possible action on pumping activity, considered the fine tuner of Na(+) reabsorption in this nephron segment, depends on blood pressure. ANG-(3-4) inhibited Na(+)-ATPase activity in membranes of spontaneously hypertensive rats (SHR) at nanomolar concentrations, with no effect in Wistar-Kyoto (WKY) rats or on Na(+)-K(+)-ATPase. PD123319 (10(-7) M) and PKA(5-24) (10(-6) M), an AT2 receptor (AT2R) antagonist and a specific PKA inhibitor, respectively, abrogated this inhibition, indicating that AT2R and PKA are central in this pathway. Despite the lack of effect of ANG-(3-4) when assayed alone in WKY rats, the peptide (10(-8) M) completely blocked stimulation of Na(+)-ATPase induced by 10(-10) M ANG II in normotensive rats through a mechanism that also involves AT2R and PKA. Tubular membranes from WKY rats had higher levels of AT2R/AT1R heterodimers, which remain associated in 10(-10) M ANG II and dissociate to a very low dimerization state upon addition of 10(-8) M ANG-(3-4). This lower level of heterodimers was that found in SHR, and heterodimers did not dissociate when the same concentration of ANG-(3-4) was present. Oral administration of ANG-(3-4) (50 mg/kg body mass) increased urinary Na(+) concentration and urinary Na(+) excretion with a simultaneous decrease in systolic arterial pressure in SHR, but not in WKY rats. Thus the influence of ANG-(3-4) on Na(+) transport and its hypotensive action depend on receptor association and on blood pressure.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Proteínas de Transporte de Cátions/antagonistas & inibidores , Dipeptídeos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Hipertensão/fisiopatologia , Imidazóis/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Ouabaína/farmacologia , Piridinas/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Tipo 2 de Angiotensina/efeitos dos fármacos , Receptor Tipo 2 de Angiotensina/fisiologia , Sódio/urina , ATPase Trocadora de Sódio-Potássio/metabolismo
14.
Biochem Biophys Res Commun ; 433(3): 333-7, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23500465

RESUMO

Human tissue kallikreins (KLKs) are a group of serine proteases found in many tissues and biological fluids and are differentially expressed in several specific pathologies. Here, we present evidences of the ability of these enzymes to activate plasminogen. Kallikreins 3 and 5 were able to induce plasmin activity after hydrolyzing plasminogen, and we also verified that plasminogen activation was potentiated in the presence of glycosaminoglycans compared with plasminogen activation by tPA. This finding can shed new light on the plasminogen/plasmin system and its involvement in tumor metastasis, in which kallikreins appear to be upregulated.


Assuntos
Fibrinolisina/química , Calicreínas/química , Inibidor 1 de Ativador de Plasminogênio/química , Plasminogênio/química , Ativador de Plasminogênio Tecidual/química , Sequência de Aminoácidos , Baculoviridae/genética , Compostos Cromogênicos/química , Ensaios Enzimáticos , Humanos , Cinética , Dados de Sequência Molecular , Proteólise , Proteínas Recombinantes/química , Soluções
15.
Mol Biochem Parasitol ; 187(2): 111-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23354130

RESUMO

We studied the substrate specificity requirements of recombinant cysteine peptidases from Plasmodium falciparum, falcipain-2 (FP-2) and falcipain-3 (FP-3), using fluorescence resonance energy transfer (FRET) peptides as substrates. Systematic modifications were introduced in the lead sequence Abz-KLRSSKQ-EDDnp (Abz=ortho-aminobenzoic acid; EDDnp=N-[2,4-dinitrophenyl]ethylenediamine) resulting in five series assayed to map S3-S'2 subsite specificity. Despite high sequence identity and structural similarity between FP-2 and FP-3, noteworthy differences in substrate specificity were observed. The S1 subsite of FP-2 preferentially accommodates peptides containing the positively charged residue Arg in P1, while FP-3 has a clear preference for the hydrophobic residue Leu in this position. The S2 subsite of FP-2 and FP-3 presents a strict specificity for hydrophobic residues, with Leu being the residue preferred by both enzymes. FP-2 did not show preference for the residues present at P3, while FP-3 hydrolysed the peptide Abz-ALRSSRQ-EDDnp, containing Ala at P3, with the highest catalytic efficiency of all series studied. FP-2 has high susceptibility for substrates containing hydrophobic residues in P'1, while FP-3 accommodates well peptides containing Arg in this position. The S'2 subsite of both enzymes demonstrated broad specificity. In addition, radioimmunoassay experiments indicated that kinins can be generated by FP-2 and FP-3 proteolysis of high molecular weight kininogen (HK). Both enzymes excised Met-Lys-bradykinin, Lys-bradykinin and bradykinin from the fluorogenic peptide Abz-MISLMKRPPGFSPFRSSRI-NH2, which corresponds to the Met(375) to Ile(393) sequence of HK. The capability of FP-2 and FP-3 to release kinins suggests the involvement of these enzymes in the modulation of malaria pathophysiology.


Assuntos
Cisteína Endopeptidases/metabolismo , Calicreínas/metabolismo , Plasmodium falciparum/enzimologia , Cininogênios/metabolismo , Cininas/metabolismo , Especificidade por Substrato
16.
J Bone Miner Res ; 28(3): 688-99, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22991293

RESUMO

X-linked hypophosphatemia (XLH/HYP)-with renal phosphate wasting, hypophosphatemia, osteomalacia, and tooth abscesses-is caused by mutations in the zinc-metallopeptidase PHEX gene (phosphate-regulating gene with homologies to endopeptidase on the X chromosome). PHEX is highly expressed by mineralized tissue cells. Inactivating mutations in PHEX lead to distal renal effects (implying accumulation of a secreted, circulating phosphaturic factor) and accumulation in bone and teeth of mineralization-inhibiting, acidic serine- and aspartate-rich motif (ASARM)-containing peptides, which are proteolytically derived from the mineral-binding matrix proteins of the SIBLING family (small, integrin-binding ligand N-linked glycoproteins). Although the latter observation suggests a local, direct matrix effect for PHEX, its physiologically relevant substrate protein(s) have not been identified. Here, we investigated two SIBLING proteins containing the ASARM motif-osteopontin (OPN) and bone sialoprotein (BSP)-as potential substrates for PHEX. Using cleavage assays, gel electrophoresis, and mass spectrometry, we report that OPN is a full-length protein substrate for PHEX. Degradation of OPN was essentially complete, including hydrolysis of the ASARM motif, resulting in only very small residual fragments. Western blotting of Hyp (the murine homolog of human XLH) mouse bone extracts having no PHEX activity clearly showed accumulation of an ∼35 kDa OPN fragment that was not present in wild-type mouse bone. Immunohistochemistry and immunogold labeling (electron microscopy) for OPN in Hyp bone likewise showed an accumulation of OPN and/or its fragments compared with normal wild-type bone. Incubation of Hyp mouse bone extracts with PHEX resulted in the complete degradation of these fragments. In conclusion, these results identify full-length OPN and its fragments as novel, physiologically relevant substrates for PHEX, suggesting that accumulation of mineralization-inhibiting OPN fragments may contribute to the mineralization defect seen in the osteomalacic bone characteristic of XLH/HYP.


Assuntos
Osso e Ossos/metabolismo , Raquitismo Hipofosfatêmico Familiar/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X , Osteopontina/metabolismo , Endopeptidase Neutra Reguladora de Fosfato PHEX/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Imuno-Histoquímica , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Osteopontina/química , Proteólise
17.
J Endocrinol ; 214(2): 217-24, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22653842

RESUMO

Leptin is a 16  kDa hormone mainly produced by adipocytes that plays an important role in many biological events including the regulation of appetite and energy balance, atherosclerosis, osteogenesis, angiogenesis, the immune response, and inflammation. The search for proteolytic enzymes capable of processing leptin prompted us to investigate the action of cysteine cathepsins on human leptin degradation. In this study, we observed high cysteine peptidase expression and hydrolytic activity in white adipose tissue (WAT), which was capable of degrading leptin. Considering these results, we investigated whether recombinant human cysteine cathepsins B, K, L, and S were able to degrade human leptin. Mass spectrometry analysis revealed that among the tested enzymes, cathepsin S exhibited the highest catalytic activity on leptin. Furthermore, using a Matrigel assay, we observed that the leptin fragments generated by cathepsin S digestion did not exhibit angiogenic action on endothelial cells and were unable to inhibit food intake in Wistar rats after intracerebroventricular administration. Taken together, these results suggest that cysteine cathepsins may be putative leptin activity regulators in WAT.


Assuntos
Catepsinas/metabolismo , Leptina/antagonistas & inibidores , Leptina/metabolismo , Processamento de Proteína Pós-Traducional , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Sequência de Aminoácidos , Indutores da Angiogênese/farmacologia , Animais , Domínio Catalítico , Catepsinas/fisiologia , Células Cultivadas , Cisteína Proteases/metabolismo , Cisteína Proteases/fisiologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Leptina/química , Leptina/farmacologia , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo
18.
Malar J ; 11: 156, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22564457

RESUMO

BACKGROUND: The malaria burden remains a major public health concern, especially in sub-Saharan Africa. The complex biology of Plasmodium, the apicomplexan parasite responsible for this disease, challenges efforts to develop new strategies to control the disease. Proteolysis is a fundamental process in the metabolism of malaria parasites, but roles for proteases in generating vasoactive peptides have not previously been explored. RESULTS: In the present work, it was demonstrated by mass spectrometry analysis that Plasmodium parasites (Plasmodium chabaudi and Plasmodium falciparum) internalize and process plasma kininogen, thereby releasing vasoactive kinins (Lys-BK, BK and des-Arg9-BK) that may mediate haemodynamic alterations during acute malaria. In addition, it was demonstrated that the P. falciparum cysteine proteases falcipain-2 and falcipain-3 generated kinins after incubation with human kininogen, suggesting that these enzymes have an important role in this process. The biologic activity of peptides released by Plasmodium parasites was observed by measuring ileum contraction and activation of kinin receptors (B1 and B2) in HUVEC cells; the peptides elicited an increase in intracellular calcium, measured by Fluo-3 AM fluorescence. This effect was suppressed by the specific receptor antagonists Des-Arg9[Leu8]-BK and HOE-140. CONCLUSIONS: In previously undescribed means of modulating host physiology, it was demonstrated that malaria parasites can generate active kinins by proteolysis of plasma kininogen.


Assuntos
Cisteína Endopeptidases/metabolismo , Cininogênios/metabolismo , Cininas/metabolismo , Plasmodium chabaudi/enzimologia , Plasmodium falciparum/enzimologia , Animais , Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Cobaias , Humanos , Íleo/efeitos dos fármacos , Espectrometria de Massas , Contração Muscular/efeitos dos fármacos , Plasmodium chabaudi/metabolismo , Plasmodium falciparum/metabolismo , Proteólise
19.
Am J Physiol Renal Physiol ; 302(7): F875-83, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22218590

RESUMO

ANG II is secreted into the lumens of proximal tubules where it is also synthesized, thus increasing the local concentration of the peptide to levels of potential physiological relevance. In the present work, we studied the effect of ANG II via the luminal membranes of LLC-PK(1) cells on Ca(2+)-ATPase of the sarco(endo)plasmic reticulum (SERCA) and plasma membrane (PMCA). ANG II (at concentrations found in the lumen) stimulated rapid (30 s) and persistent (30 min) SERCA activity by more than 100% and increased Ca(2+) mobilization. Pretreatment with ANG II for 30 min enhanced the ANG II-induced Ca(2+) spark, demonstrating a positively self-sustained stimulus of Ca(2+) mobilization by ANG II. ANG II in the medium facing the luminal side of the cells decreased with time with no formation of metabolites, indicating peptide internalization. ANG II increased heterodimerization of AT(1) and AT(2) receptors by 140%, and either losartan or PD123319 completely blocked the stimulation of SERCA by ANG II. Using the PLC inhibitor U73122, PMA, and calphostin C, it was possible to demonstrate the involvement of a PLC→DAG(PMA)→PKC pathway in the stimulation of SERCA by ANG II with no effect on PMCA. We conclude that ANG II triggers SERCA activation via the luminal membrane, increasing the Ca(2+) stock in the reticulum to ensure a more efficient subsequent mobilization of Ca(2+). This first report on the regulation of SERCA activity by ANG II shows a new mechanism for Ca(2+) homeostasis in renal cells and also for regulation of Ca(2+)-modulated fluid reabsorption in proximal tubules.


Assuntos
Angiotensina II/metabolismo , Túbulos Renais Proximais/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/enzimologia , Neprilisina/metabolismo , Peptídeo Hidrolases/metabolismo , Peptidil Dipeptidase A/metabolismo , Multimerização Proteica , Transdução de Sinais , Suínos
20.
Biol Chem ; 393(12): 1547-54, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23667908

RESUMO

Somatic angiotensin I-converting enzyme (ACE)has two homologous active sites (N and C domains) that show differences in various biochemical properties.In a previous study, we described the use of positionals canning synthetic combinatorial (PS-SC) libraries of fluorescence resonance energy transfer (FRET) peptides to define the ACE C-domain versus N-domain substrate specificity and developed selective substrates for the C-domain(Bersanetti et al., 2004). In the present work, we used the results from the PS-SC libraries to define the N-domain preferences and designed selective substrates for this domain. The peptide Abz-GDDVAK(Dnp)-OH presented the most favorable residues for N-domain selectivity in the P 3 to P 1 ' positions. The fluorogenic analog Abz-DVAK(Dnp)-OH (Abz = ortho -aminobenzoic acid; Dnp = 2,4-dinitrophenyl)showed the highest selectivity for ACE N-domain( k cat /K m = 1.76 µ m -1 · s -1) . Systematic reduction of the peptide length resulted in a tripeptide that was preferentially hydrolyzed by the C-domain. The binding of Abz-DVAK(Dnp)-OH to the active site of ACE N-domain was examined using a combination of conformational analysis and molecular docking. Our results indicated that the binding energies for the N-domain-substrate complexes were lower than those for the C-domain-substrate, suggesting that the former complexes are more stable.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Peptídeos/química , Peptídeos/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Dados de Sequência Molecular , Biblioteca de Peptídeos , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA