Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 871, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020082

RESUMO

Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system remains unclear. Here, we compare complement activation by two groups of representative monoclonal antibodies (mAbs) interacting with the glycan cap (GC) or the membrane-proximal external region (MPER) of GP. Binding of GC-specific mAbs to GP induces complement-dependent cytotoxicity (CDC) in the GP-expressing cell line via C3 deposition on GP in contrast to MPER-specific mAbs. In the mouse model of EBOV infection, depletion of the complement system leads to an impairment of protection exerted by one of the GC-specific, but not MPER-specific mAbs. Our data suggest that activation of the complement system represents an important mechanism of antiviral protection by GC antibodies.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Polissacarídeos , Proteínas do Envelope Viral , Animais , Ebolavirus/imunologia , Anticorpos Monoclonais/imunologia , Camundongos , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Doença pelo Vírus Ebola/prevenção & controle , Polissacarídeos/imunologia , Anticorpos Antivirais/imunologia , Humanos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Ativação do Complemento , Camundongos Endogâmicos BALB C , Feminino , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Glicoproteínas/imunologia
2.
Nat Microbiol ; 9(8): 2128-2143, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38858594

RESUMO

Human parainfluenza virus type 3 (hPIV3) is a respiratory pathogen that can cause severe disease in older people and infants. Currently, vaccines against hPIV3 are in clinical trials but none have been approved yet. The haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Here we describe naturally occurring potently neutralizing human antibodies directed against both surface glycoproteins of hPIV3. We isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. One HN-binding monoclonal antibody (mAb), designated PIV3-23, exhibited functional attributes including haemagglutination and neuraminidase inhibition. We also delineated the structural basis of neutralization for two HN and one F mAbs. MAbs that neutralized hPIV3 in vitro protected against infection and disease in vivo in a cotton rat model of hPIV3 infection, suggesting correlates of protection for hPIV3 and the potential clinical utility of these mAbs.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteína HN , Vírus da Parainfluenza 3 Humana , Infecções por Respirovirus , Sigmodontinae , Proteínas Virais de Fusão , Animais , Vírus da Parainfluenza 3 Humana/imunologia , Vírus da Parainfluenza 3 Humana/genética , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/química , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/química , Proteína HN/imunologia , Proteína HN/química , Proteína HN/genética , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/virologia , Modelos Animais de Doenças , Testes de Neutralização , Linfócitos B/imunologia , Modelos Moleculares
3.
J Immunol ; 212(9): 1450-1456, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488511

RESUMO

Human parainfluenza virus 3 (HPIV3) is a widespread pathogen causing severe and lethal respiratory illness in at-risk populations. Effective countermeasures are in various stages of development; however, licensed therapeutic and prophylactic options are not available. The fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing Abs that inhibit infection. Although several neutralizing Abs against a small number of HPIV3 F epitopes have been identified to date, relatively little is known about the Ab response to HPIV3 compared with other pathogens, such as influenza virus and SARS-CoV-2. In this study, we aimed to characterize a set of HPIV3-specific Abs identified in multiple individuals for genetic signatures, epitope specificity, neutralization potential, and publicness. We identified 12 potently neutralizing Abs targeting three nonoverlapping epitopes on HPIV3 F. Among these, six Abs identified from two different individuals used Ig heavy variable gene IGHV 5-51, with five of the six Abs targeting the same epitope. However, despite the use of the same H chain variable (VH) gene, these Abs used multiple different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. Together, these results provide further information about the genetic and functional characteristics of HPIV3-neutralizing Abs and suggest the existence of a reproducible VH-dependent Ab response associated with VL and CDRH3 promiscuity. Understanding sites of HPIV3 F vulnerability and the genetic and molecular characteristics of Abs targeting these sites will help guide efforts for effective vaccine and therapeutic development.


Assuntos
Anticorpos Neutralizantes , Vírus da Parainfluenza 3 Humana , Humanos , Proteínas Virais de Fusão/genética , Epitopos , Anticorpos Antivirais
4.
Cell Host Microbe ; 31(8): 1288-1300.e6, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516111

RESUMO

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections pose a significant health burden. Using pre-fusion conformation fusion (F) proteins, we isolated a panel of anti-F antibodies from a human donor. One antibody (RSV-199) potently cross-neutralized 8 RSV and hMPV strains by recognizing antigenic site III, which is partially conserved in RSV and hMPV F. Next, we determined the cryoelectron microscopy (cryo-EM) structures of RSV-199 bound to RSV F trimers, hMPV F monomers, and an unexpected dimeric form of hMPV F. These structures revealed how RSV-199 engages both RSV and hMPV F proteins through conserved interactions of the antibody heavy-chain variable region and how variability within heavy-chain complementarity-determining region 3 (HCDR3) can be accommodated at the F protein interface in site-III-directed antibodies. Furthermore, RSV-199 offered enhanced protection against RSV A and B strains and hMPV in cotton rats. These findings highlight the mechanisms of broad neutralization and therapeutic potential of RSV-199.


Assuntos
Metapneumovirus , Vírus Sincicial Respiratório Humano , Humanos , Metapneumovirus/metabolismo , Anticorpos Neutralizantes , Anticorpos Antivirais , Microscopia Crioeletrônica , Região Variável de Imunoglobulina , Proteínas Virais de Fusão
5.
Cancer Res Commun ; 3(5): 860-873, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37377896

RESUMO

Immune checkpoint blockade therapy, one of the most promising cancer immunotherapies, has shown remarkable clinical impact in multiple cancer types. Despite the recent success of immune checkpoint blockade therapy, however, the response rates in patients with cancer are limited (∼20%-40%). To improve the success of immune checkpoint blockade therapy, relevant preclinical animal models are essential for the development and testing of multiple combination approaches and strategies. Companion dogs naturally develop several types of cancer that in many respects resemble clinical cancer in human patients. Therefore, the canine studies of immuno-oncology drugs can generate knowledge that informs and prioritizes new immuno-oncology therapy in humans. The challenge has been, however, that immunotherapeutic antibodies targeting canine immune checkpoint molecules such as canine PD-L1 (cPD-L1) have not been commercially available. Here, we developed a new cPD-L1 antibody as an immuno-oncology drug and characterized its functional and biological properties in multiple assays. We also evaluated the therapeutic efficacy of cPD-L1 antibodies in our unique caninized PD-L1 mice. Together, these in vitro and in vivo data, which include an initial safety profile in laboratory dogs, support development of this cPD-L1 antibody as an immune checkpoint inhibitor for studies in dogs with naturally occurring cancer for translational research. Our new therapeutic antibody and caninized PD-L1 mouse model will be essential translational research tools in raising the success rate of immunotherapy in both dogs and humans. Significance: Our cPD-L1 antibody and unique caninized mouse model will be critical research tools to improve the efficacy of immune checkpoint blockade therapy in both dogs and humans. Furthermore, these tools will open new perspectives for immunotherapy applications in cancer as well as other autoimmune diseases that could benefit a diverse and broader patient population.


Assuntos
Neoplasias , Pesquisa Translacional Biomédica , Humanos , Cães , Animais , Camundongos , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Imunoterapia , Anticorpos
6.
J Pediatric Infect Dis Soc ; 12(5): 298-305, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37029694

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of respiratory disease in infants, making vaccination an attractive preventive strategy. Due to earlier reports of vaccine-enhanced disease in RSV-naive children, assessing prior RSV infection is critical for determining eligibility for future infant vaccine trials. However, this is complicated by the presence of maternally transferred maternal antibodies. We sought to develop assays that measure immune responses to RSV pre-fusion (F) protein that discriminates between maternal and infant responses. METHODS: We measured RSV-specific responses in two groups of children <3 years of age; those with laboratory-confirmed RSV (RSV-infected) and those enrolled prior to their first RSV season (RSV-uninfected). Serial blood samples were obtained and recent infections with RSV and other respiratory viruses were assessed during follow-up. An RSV pre-F-specific kinetic enzyme-linked immunosorbent assay (kELISA) and an F-specific reactive B cell frequency (RBF) assay were developed. RESULTS: One hundred two young children were enrolled between July 2015 and April 2017; 74 were in the RSV-uninfected group and 28 were in the RSV-infected group. Participants were asked to provide sequential blood samples over time, but only 53 participants in the RSV-uninfected group and 22 participants in the RSV-infected groups provided multiple samples. In the RSV-infected group, most had positive kELISA and RBF during the study. In the RSV-uninfected group, two patterns emerged: declining kELISA values without reactive B cells, due to maternal transplacental antibody transfer, and persistently positive kELISA with reactive B cells, due to asymptomatic undiagnosed RSV infection. CONCLUSIONS: A kELISA targeting RSV pre-F epitopes and an RBF assay targeting RSV F-specific B cells generally allow discrimination between maternally and infant-derived antibodies.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Criança , Lactente , Humanos , Pré-Escolar , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas Virais de Fusão , Imunidade , Ensaio de Imunoadsorção Enzimática
7.
Proc Natl Acad Sci U S A ; 119(47): e2213432119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36378644

RESUMO

Cytochrome c (cyt c) can undergo reversible conformational changes under biologically relevant conditions. Revealing these alternative cyt c conformers at the cell and tissue level is challenging. A monoclonal antibody (mAb) identifying a key conformational change in cyt c was previously reported, but the hybridoma was rendered nonviable. To resurrect the mAb in a recombinant form, the amino-acid sequences of the heavy and light chains were determined by peptide mapping-mass spectrometry-bioinformatic analysis and used to construct plasmids encoding the full-length chains. The recombinant mAb (R1D3) was shown to perform similarly to the original mAb in antigen-binding assays. The mAb bound to a variety of oxidatively modified cyt c species (e.g., nitrated at Tyr74 or oxidized at Met80), which lose the sixth heme ligation (Fe-Met80); it did not bind to several cyt c phospho- and acetyl-mimetics. Peptide competition assays together with molecular dynamic studies support that R1D3 binds a neoepitope within the loop 40-57. R1D3 was employed to identify alternative conformations of cyt c in cells under oxidant- or senescence-induced challenge as confirmed by immunocytochemistry and immunoaffinity studies. Alternative conformers translocated to the nuclei without causing apoptosis, an observation that was further confirmed after pinocytic loading of oxidatively modified cyt c to B16-F1 cells. Thus, alternative cyt c conformers, known to gain peroxidatic function, may represent redox messengers at the cell nuclei. The availability and properties of R1D3 open avenues of interrogation regarding the presence and biological functions of alternative conformations of cyt c in mammalian cells and tissues.


Assuntos
Citocromos c , Heme , Animais , Sequência de Aminoácidos , Anticorpos Monoclonais , Citocromos c/química , Heme/química , Hibridomas , Oxirredução , Melanoma Experimental , Camundongos
8.
Sci Transl Med ; 14(665): eabo6160, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35857623

RESUMO

Human monoclonal antibodies (mAbs) that target the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) offer a promising approach for the prevention and treatment of coronavirus disease 2019 (COVID-19). Given suboptimal global vaccination rates, waning immunity in vaccinated individuals, and the emergence of SARS-CoV-2 variants of concern, the use of mAbs for COVID-19 prevention may increase and may need to be administered together with vaccines in certain settings. However, it is unknown whether administration of mAbs will affect the immunogenicity of SARS-CoV-2 vaccines. Using an adenovirus vector-based SARS-CoV-2 vaccine, we show that simultaneous administration of the vaccine with SARS-CoV-2 mAbs does not diminish vaccine-induced humoral or cellular immunity in cynomolgus macaques. These results suggest that SARS-CoV-2 mAbs and viral vector-based SARS-CoV-2 vaccines can be administered together without loss of potency of either product. Additional studies will be required to evaluate coadministration of mAbs with other vaccine platforms.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
9.
J Cell Sci ; 134(6)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33097605

RESUMO

We report here the effects of targeted p120-catenin (encoded by CTNND1; hereafter denoted p120) knockout (KO) in a PyMT mouse model of invasive ductal (mammary) cancer (IDC). Mosaic p120 ablation had little effect on primary tumor growth but caused significant pro-metastatic alterations in the tumor microenvironment, ultimately leading to a marked increase in the number and size of pulmonary metastases. Surprisingly, although early effects of p120-ablation included decreased cell-cell adhesion and increased invasiveness, cells lacking p120 were almost entirely unable to colonized distant metastatic sites in vivo The relevance of this observation to human IDC was established by analysis of a large clinical dataset of 1126 IDCs. As reported by others, p120 downregulation in primary IDC predicted worse overall survival. However, as in the mice, distant metastases were almost invariably p120 positive, even in matched cases where the primary tumors were p120 negative. Collectively, our results demonstrate a strong positive role for p120 (and presumably E-cadherin) during metastatic colonization of distant sites. On the other hand, downregulation of p120 in the primary tumor enhanced metastatic dissemination indirectly via pro-metastatic conditioning of the tumor microenvironment.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/genética , Caderinas/genética , Cateninas/genética , Adesão Celular , Feminino , Humanos , Camundongos , Microambiente Tumoral , delta Catenina
10.
Proc Natl Acad Sci U S A ; 117(49): 31142-31148, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229516

RESUMO

Marburg virus (MARV) disease is lethal, with fatality rates up to 90%. Neutralizing antibodies (Abs) are promising drug candidates to prevent or treat the disease. Current efforts are focused in part on vaccine development to induce such MARV-neutralizing Abs. We analyzed the antibody repertoire from healthy unexposed and previously MARV-infected individuals to assess if naïve repertoires contain suitable precursor antibodies that could become neutralizing with a limited set of somatic mutations. We computationally searched the human Ab variable gene repertoire for predicted structural homologs of the neutralizing Ab MR78 that is specific to the receptor binding site (RBS) of MARV glycoprotein (GP). Eight Ab heavy-chain complementarity determining region 3 (HCDR3) loops from MARV-naïve individuals and one from a previously MARV-infected individual were selected for testing as HCDR3 loop chimeras on the MR78 Ab framework. Three of these chimerized antibodies bound to MARV GP. We then tested a full-length native Ab heavy chain encoding the same 17-residue-long HCDR3 loop that bound to the MARV GP the best among the chimeric Abs tested. Despite only 57% amino acid sequence identity, the Ab from a MARV-naïve donor recognized MARV GP and possessed neutralizing activity against the virus. Crystallization of both chimeric and full-length native heavy chain-containing Abs provided structural insights into the mechanism of binding for these types of Abs. Our work suggests that the MARV GP RBS is a promising candidate for epitope-focused vaccine design to induce neutralizing Abs against MARV.


Assuntos
Anticorpos Antivirais/genética , Regiões Determinantes de Complementaridade/genética , Doença do Vírus de Marburg/imunologia , Marburgvirus/imunologia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Regiões Determinantes de Complementaridade/imunologia , Epitopos/genética , Epitopos/imunologia , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Doença do Vírus de Marburg/tratamento farmacológico , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/virologia , Marburgvirus/patogenicidade , Mutação/genética , Mutação/imunologia , Proteínas do Envelope Viral , Vacinas Virais/genética , Vacinas Virais/imunologia
11.
Mol Ther Methods Clin Dev ; 18: 402-414, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32695842

RESUMO

Monoclonal antibody (mAb) therapeutics are an effective modality for the treatment of infectious, autoimmune, and cancer-related diseases. However, the discovery, development, and manufacturing processes are complex, resource-consuming activities that preclude the rapid deployment of mAbs in outbreaks of emerging infectious diseases. Given recent advances in nucleic acid delivery technology, it is now possible to deliver exogenous mRNA encoding mAbs for in situ expression following intravenous (i.v.) infusion of lipid nanoparticle-encapsulated mRNA. However, the requirement for i.v. administration limits the application to settings where infusion is an option, increasing the cost of treatment. As an alternative strategy, and to enable intramuscular (IM) administration of mRNA-encoded mAbs, we describe a nanostructured lipid carrier for delivery of an alphavirus replicon encoding a previously described highly neutralizing human mAb, ZIKV-117. Using a lethal Zika virus challenge model in mice, our studies show robust protection following alphavirus-driven expression of ZIKV-117 mRNA when given by IM administration as pre-exposure prophylaxis or post-exposure therapy.

12.
PLoS Pathog ; 16(5): e1008517, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32365139

RESUMO

Ross River fever is a mosquito-transmitted viral disease that is endemic to Australia and the surrounding Pacific Islands. Ross River virus (RRV) belongs to the arthritogenic group of alphaviruses, which largely cause disease characterized by debilitating polyarthritis, rash, and fever. There is no specific treatment or licensed vaccine available, and the mechanisms of protective humoral immunity in humans are poorly understood. Here, we describe naturally occurring human mAbs specific to RRV, isolated from subjects with a prior natural infection. These mAbs potently neutralize RRV infectivity in cell culture and block infection through multiple mechanisms, including prevention of viral attachment, entry, and fusion. Some of the most potently neutralizing mAbs inhibited binding of RRV to Mxra8, a recently discovered alpahvirus receptor. Epitope mapping studies identified the A and B domains of the RRV E2 protein as the major antigenic sites for the human neutralizing antibody response. In experiments in mice, these mAbs were protective against cinical disease and reduced viral burden in multiple tissues, suggesting a potential therapeutic use for humans.


Assuntos
Infecções por Alphavirus/prevenção & controle , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas do Capsídeo/imunologia , Epitopos/imunologia , Ross River virus/imunologia , Proteínas do Envelope Viral/imunologia , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/patologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Chlorocebus aethiops , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Células Vero
13.
Cell Host Microbe ; 27(5): 710-724.e7, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32407709

RESUMO

The rational design of dengue virus (DENV) vaccines requires a detailed understanding of the molecular basis for antibody-mediated immunity. The durably protective antibody response to DENV after primary infection is serotype specific. However, there is an incomplete understanding of the antigenic determinants for DENV type-specific (TS) antibodies, especially for DENV serotype 3, which has only one well-studied, strongly neutralizing human monoclonal antibody (mAb). Here, we investigated the human B cell response in children after natural DENV infection in the endemic area of Nicaragua and isolated 15 DENV3 TS mAbs recognizing the envelope (E) glycoprotein. Functional epitope mapping of these mAbs and small animal prophylaxis studies revealed a complex landscape with protective epitopes clustering in at least 6-7 antigenic sites. Potently neutralizing TS mAbs recognized sites principally in E glycoprotein domains I and II, and patterns suggest frequent recognition of quaternary structures on the surface of viral particles.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Sorogrupo , Adolescente , Animais , Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Criança , Pré-Escolar , Chlorocebus aethiops , Vacinas contra Dengue , Vírus da Dengue/genética , Mapeamento de Epitopos , Epitopos/imunologia , Humanos , Camundongos , Modelos Moleculares , Nicarágua , Alinhamento de Sequência , Células Vero , Proteínas do Envelope Viral/imunologia , Vírion
14.
Cell Metab ; 29(3): 745-754.e4, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30449685

RESUMO

Identification of cell-surface markers specific to human pancreatic ß cells would allow in vivo analysis and imaging. Here we introduce a biomarker, ectonucleoside triphosphate diphosphohydrolase-3 (NTPDase3), that is expressed on the cell surface of essentially all adult human ß cells, including those from individuals with type 1 or type 2 diabetes. NTPDase3 is expressed dynamically during postnatal human pancreas development, appearing first in acinar cells at birth, but several months later its expression declines in acinar cells while concurrently emerging in islet ß cells. Given its specificity and membrane localization, we utilized an NTPDase3 antibody for purification of live human ß cells as confirmed by transcriptional profiling, and, in addition, for in vivo imaging of transplanted human ß cells. Thus, NTPDase3 is a cell-surface biomarker of adult human ß cells, and the antibody directed to this protein should be a useful new reagent for ß cell sorting, in vivo imaging, and targeting.


Assuntos
Adenosina Trifosfatases/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Adulto , Animais , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Pâncreas/patologia , Adulto Jovem
15.
J Clin Invest ; 127(12): 4462-4476, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29130932

RESUMO

p120-Catenin (p120) functions as a tumor suppressor in intestinal cancer, but the mechanism is unclear. Here, using conditional p120 knockout in Apc-sensitized mouse models of intestinal cancer, we have identified p120 as an "obligatory" haploinsufficient tumor suppressor. Whereas monoallelic loss of p120 was associated with a significant increase in tumor multiplicity, loss of both alleles was never observed in tumors from these mice. Moreover, forced ablation of the second allele did not further enhance tumorigenesis, but instead induced synthetic lethality in combination with Apc loss of heterozygosity. In tumor-derived organoid cultures, elimination of both p120 alleles resulted in caspase-3-dependent apoptosis that was blocked by inhibition of Rho kinase (ROCK). With ROCK inhibition, however, p120-ablated organoids exhibited a branching phenotype and a substantial increase in cell proliferation. Access to data from Sleeping Beauty mutagenesis screens afforded an opportunity to directly assess the tumorigenic impact of p120 haploinsufficiency relative to other candidate drivers. Remarkably, p120 ranked third among the 919 drivers identified. Cofactors α-catenin and epithelial cadherin (E-cadherin) were also among the highest scoring candidates, indicating a mechanism at the level of the intact complex that may play an important role at very early stages of of intestinal tumorigenesis while simultaneously restricting outright loss via synthetic lethality.


Assuntos
Proteína da Polipose Adenomatosa do Colo , Cateninas , Haploinsuficiência , Neoplasias Intestinais , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Cateninas/genética , Cateninas/metabolismo , Neoplasias Intestinais/genética , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Camundongos , Camundongos Knockout , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , delta Catenina
16.
Am J Respir Cell Mol Biol ; 53(5): 719-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25884207

RESUMO

Tissue factor (TF) initiates the extrinsic coagulation cascade in response to tissue injury, leading to local fibrin deposition. Low levels of TF in mice are associated with increased severity of acute lung injury (ALI) after intratracheal LPS administration. However, the cellular sources of the TF required for protection from LPS-induced ALI remain unknown. In the current study, transgenic mice with cell-specific deletions of TF in the lung epithelium or myeloid cells were treated with intratracheal LPS to determine the cellular sources of TF important in direct ALI. Cell-specific deletion of TF in the lung epithelium reduced total lung TF expression to 39% of wild-type (WT) levels at baseline and to 29% of WT levels after intratracheal LPS. In contrast, there was no reduction of TF with myeloid cell TF deletion. Mice lacking myeloid cell TF did not differ from WT mice in coagulation, inflammation, permeability, or hemorrhage. However, mice lacking lung epithelial TF had increased tissue injury, impaired activation of coagulation in the airspace, disrupted alveolar permeability, and increased alveolar hemorrhage after intratracheal LPS. Deletion of epithelial TF did not affect alveolar permeability in an indirect model of ALI caused by systemic LPS infusion. These studies demonstrate that the lung epithelium is the primary source of TF in the lung, contributing 60-70% of total lung TF, and that lung epithelial, but not myeloid, TF may be protective in direct ALI.


Assuntos
Lesão Pulmonar Aguda/genética , Coagulação Sanguínea/genética , Permeabilidade Capilar/genética , Hemorragia/genética , Síndrome do Desconforto Respiratório/genética , Tromboplastina/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Expressão Gênica , Hemorragia/induzido quimicamente , Hemorragia/metabolismo , Hemorragia/patologia , Lipopolissacarídeos , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Células Mieloides/patologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Tromboplastina/deficiência
17.
PLoS One ; 7(12): e51205, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251453

RESUMO

Myeloid translocation genes (MTGs) are transcriptional corepressors originally identified in acute myelogenous leukemia that have recently been linked to epithelial malignancy with non-synonymous mutations identified in both MTG8 and MTG16 in colon, breast, and lung carcinoma in addition to functioning as negative regulators of WNT and Notch signaling. A yeast two-hybrid approach was used to discover novel MTG binding partners. This screen identified the Zinc fingers, C2H2 and BTB domain containing (ZBTB) family members ZBTB4 and ZBTB38 as MTG16 interacting proteins. ZBTB4 is downregulated in breast cancer and modulates p53 responses. Because ZBTB33 (Kaiso), like MTG16, modulates Wnt signaling at the level of TCF4, and its deletion suppresses intestinal tumorigenesis in the Apc(Min) mouse, we determined that Kaiso also interacted with MTG16 to modulate transcription. The zinc finger domains of Kaiso as well as ZBTB4 and ZBTB38 bound MTG16 and the association with Kaiso was confirmed using co-immunoprecipitation. MTG family members were required to efficiently repress both a heterologous reporter construct containing Kaiso binding sites (4×KBS) and the known Kaiso target, Matrix metalloproteinase-7 (MMP-7/Matrilysin). Moreover, chromatin immunoprecipitation studies placed MTG16 in a complex occupying the Kaiso binding site on the MMP-7 promoter. The presence of MTG16 in this complex, and its contributions to transcriptional repression both required Kaiso binding to its binding site on DNA, establishing MTG16-Kaiso binding as functionally relevant in Kaiso-dependent transcriptional repression. Examination of a large multi-stage CRC expression array dataset revealed patterns of Kaiso, MTG16, and MMP-7 expression supporting the hypothesis that loss of either Kaiso or MTG16 can de-regulate a target promoter such as that of MMP-7. These findings provide new insights into the mechanisms of transcriptional control by ZBTB family members and broaden the scope of co-repressor functions for the MTG family, suggesting coordinate regulation of transcription by Kaiso/MTG complexes in cancer.


Assuntos
Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Fatores de Transcrição/fisiologia , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina , Imunofluorescência , Técnicas de Silenciamento de Genes , Células HEK293 , Células HT29 , Humanos , Células K562 , Metaloproteinase 7 da Matriz/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/genética
18.
Exp Cell Res ; 312(17): 3336-48, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16935280

RESUMO

p120-catenin (p120) regulates cadherin turnover and is required for cadherin stability. Extensive and dynamic phosphorylation on tyrosine, serine and threonine residues in the N-terminal regulatory domain has been postulated to regulate p120 function, possibly through modulation of the efficiency of p120/cadherin interaction. Here we have utilized novel phospho-specific monoclonal antibodies to four major p120 serine and threonine phosphorylation sites to monitor individual phosphorylation events and their consequences. Surprisingly, membrane-localization and not cadherin interaction is the main determinant in p120 serine and threonine phosphorylation and dephosphorylation. Furthermore, the phospho-status of these four residues had no obvious effect on p120's role in cadherin complex stabilization or cell-cell adhesion. Interestingly, dephosphorylation was dramatically induced by PKC activation, but PKC-independent pathways were also evident. The data suggest that p120 dephosphorylation at these sites is modulated by multiple cell surface receptors primarily through PKC-dependent pathways, but these changes do not seem to reduce p120/cadherin affinity.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Fosfoproteínas/metabolismo , Serina/metabolismo , Treonina/metabolismo , Substituição de Aminoácidos , Animais , Cateninas , Moléculas de Adesão Celular/análise , Moléculas de Adesão Celular/imunologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cães , Humanos , Ligantes , Mutagênese Sítio-Dirigida , Fosfoproteínas/análise , Fosfoproteínas/imunologia , Fosforilação , Ligação Proteica , Proteína Quinase C/metabolismo , RNA Interferente Pequeno , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , delta Catenina
19.
Semin Cell Dev Biol ; 15(6): 657-63, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15561585

RESUMO

The strength of cadherin based cell-cell adhesion is modulated by signaling events that control the amount of cadherin present at the cell surface, and the clustering of cadherins into strong adhesive junctions. p120ctn has been indirectly implicated in clustering for some time, but it now appears that its main function is to regulate cadherin turnover. Forced p120 downregulation (e.g., by siRNA targeting) results in a striking dose-dependant loss of endogenous cadherins, indicating that p120 is essential for cadherin stability. These data challenge some important paradigms and suggest novel interpretations of existing data. For example, most of the effects of DN-cadherin expression can be accounted for by sequestration of p120. Thus, DN-cadherins phenocopy p120-downregulation, and a significant literature exists already that suggests consequences of p120-deficiency in disease and cancer. Moreover, p120 downregulation occurs frequently in essentially all of the major carcinoma types. Thus, it is possible that the classic observation of E-cadherin-deficiency in metastatic cancer may in some cases be due to p120 downregulation rather than better understood mechanisms acting at the level of E-cadherin transcription.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Animais , Cateninas , Adesão Celular , Progressão da Doença , Regulação para Baixo , Genes Dominantes , Humanos , Modelos Biológicos , Metástase Neoplásica , Transdução de Sinais , delta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA