Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Extracell Vesicles ; 13(9): e12506, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39300768

RESUMO

Sepsis following burn trauma is a global complication with high mortality, with ∼60% of burn patient deaths resulting from infectious complications. Diagnosing sepsis is complicated by confounding clinical manifestations of the burn injury, and current biomarkers lack the sensitivity and specificity required for prompt treatment. There is a strong rationale to assess circulating extracellular vesicles (EVs) from patient liquid biopsy as sepsis biomarkers due to their release by pathogens from bacterial biofilms and roles in the subsequent immune response. This study applies Raman spectroscopy to patient plasma-derived EVs for rapid, sensitive, and specific detection of sepsis in burn patients, achieving 97.5% sensitivity and 90.0% specificity. Furthermore, spectral differences between septic and non-septic burn patient EVs could be traced to specific glycoconjugates of bacterial strains associated with sepsis morbidity. This work illustrates the potential application of EVs as biomarkers in clinical burn trauma care and establishes Raman analysis as a fast, label-free method to specifically identify features of bacterial EVs relevant to infection amongst the host background.


Assuntos
Biomarcadores , Queimaduras , Vesículas Extracelulares , Sepse , Análise Espectral Raman , Humanos , Queimaduras/complicações , Queimaduras/metabolismo , Análise Espectral Raman/métodos , Vesículas Extracelulares/metabolismo , Sepse/metabolismo , Sepse/sangue , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Masculino , Adulto , Pessoa de Meia-Idade
2.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798662

RESUMO

Sepsis following burn trauma is a global complication with high mortality, with ~60% of burn patient deaths resulting from infectious complications. Sepsis diagnosis is complicated by confounding clinical manifestations of the burn injury, and current biomarkers markers lack the sensitivity and specificity required for prompt treatment. Circulating extracellular vesicles (EVs) from patient liquid biopsy as biomarkers of sepsis due to their release by pathogens from bacterial biofilms and roles in subsequent immune response. This study applies Raman spectroscopy to patient plasma derived EVs for rapid, sensitive, and specific detection of sepsis in burn patients, achieving 97.5% sensitivity and 90.0% specificity. Furthermore, spectral differences between septic and non-septic burn patient EVs could be traced to specific glycoconjugates of bacterial strains associated with sepsis morbidity. This work illustrates the potential application of EVs as biomarkers in clinical burn trauma care, and establishes Raman analysis as a fast, label-free method to specifically identify features of bacterial EVs relevant to infection amongst the host background.

3.
Adv Biol (Weinh) ; 8(6): e2300577, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38596830

RESUMO

Metastasis is the principal factor in poor prognosis for individuals with osteosarcoma (OS). Understanding the events that lead to metastasis is critical to develop better interventions for this disease. Alveolar macrophages are potentially involved in priming the lung microenvironment for OS metastasis, yet the mechanisms involved in this process remain unclear. Since extracellular vesicles (EVs) are a known actor in primary tumor development, their potential role in OS metastagenesis through macrophage modulation is explored here. The interaction of EVs isolated from highly metastatic (K7M2) and less metastatic (K12) osteosarcoma cell lines is compared with a peritoneal macrophage cell line. An EV concentration that reproducibly induced macrophage migration is identified first, then used for later experiments. By confocal microscopy, both EV types associated with M0 or M1 macrophages; however, only K7M2-EVs are associated with M2 macrophages, an interaction that is abrogated by EV pre-treatment with anti-CD47 antibody. Interestingly, all interactions appeared to be surface binding, not internalized. In functional studies, K7M2-EVs polarized fewer macrophages to M1. Together, these data suggest that K7M2-EVs have unique interactions with macrophages that can contribute to the production of a higher proportion of pro-tumor type macrophages, thereby accelerating metastasis.


Assuntos
Neoplasias Ósseas , Vesículas Extracelulares , Macrófagos , Osteossarcoma , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/secundário , Vesículas Extracelulares/metabolismo , Humanos , Linhagem Celular Tumoral , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Fenótipo , Animais , Microambiente Tumoral , Metástase Neoplásica , Camundongos , Movimento Celular
4.
J Extracell Vesicles ; 12(4): e12323, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37073802

RESUMO

Extracellular vesicles (EVs) influence a host of normal and pathophysiological processes in vivo. Compared to soluble mediators, EVs can traffic a wide range of proteins on their surface including extracellular matrix (ECM) binding proteins, and their large size (∼30-150 nm) limits diffusion. We isolated EVs from the MCF10 series-a model human cell line of breast cancer progression-and demonstrated increasing presence of laminin-binding integrins α3ß1 and α6ß1 on the EVs as the malignant potential of the MCF10 cells increased. Transport of the EVs within a microfluidic device under controlled physiological interstitial flow (0.15-0.75 µm/s) demonstrated that convection was the dominant mechanism of transport. Binding of the EVs to the ECM enhanced the spatial concentration and gradient, which was mitigated by blocking integrins α3ß1 and α6ß1. Our studies demonstrate that convection and ECM binding are the dominant mechanisms controlling EV interstitial transport and should be leveraged in nanotherapeutic design.


Assuntos
Vesículas Extracelulares , Laminina , Humanos , Laminina/metabolismo , Convecção , Integrina alfa6beta1/metabolismo , Vesículas Extracelulares/metabolismo , Integrina alfa3beta1/metabolismo , Matriz Extracelular/metabolismo
5.
Sci Rep ; 12(1): 18464, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323705

RESUMO

As a rapid, label-free, non-destructive analytical measurement requiring little to no sample preparation, Raman spectroscopy shows great promise for liquid biopsy cancer detection and diagnosis. We carried out Raman analysis and mass spectrometry of plasma and saliva from more than 50 subjects in a cohort of head and neck cancer patients and benign controls (e.g., patients with benign oral masses). Unsupervised data models were built to assess diagnostic performance. Raman spectra collected from either biofluid provided moderate performance to discriminate cancer samples. However, by fusing together the Raman spectra of plasma and saliva for each patient, subsequent analytical models delivered an impressive sensitivity, specificity, and accuracy of 96.3%, 85.7%, and 91.7%, respectively. We further confirmed that the metabolites driving the differences in Raman spectra for our models are among the same ones that drive mass spectrometry models, unifying the two techniques and validating the underlying ability of Raman to assess metabolite composition. This study bolsters the relevance of Raman to provide additive value by probing the unique chemical compositions across biofluid sources. Ultimately, we show that a simple data augmentation routine of fusing plasma and saliva spectra provided significantly higher clinical value than either biofluid alone, pushing forward the potential of clinical translation of Raman spectroscopy for liquid biopsy cancer diagnostics.


Assuntos
Neoplasias de Cabeça e Pescoço , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Saliva , Neoplasias de Cabeça e Pescoço/diagnóstico , Manejo de Espécimes
6.
Nanoscale ; 13(35): 14760-14776, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34473170

RESUMO

Given the emerging diagnostic utility of extracellular vesicles (EVs), it is important to account for non-EV contaminants. Lipoprotein present in EV-enriched isolates may inflate particle counts and decrease sensitivity to biomarkers of interest, skewing chemical analyses and perpetuating downstream issues in labeling or functional analysis. Using label free surface enhanced Raman scattering (SERS), we confirm that three common EV isolation methods (differential ultracentrifugation, density gradient ultracentrifugation, and size exclusion chromatography) yield variable lipoprotein content. We demonstrate that a dual-isolation method is necessary to isolate EVs from the major classes of lipoprotein. However, combining SERS analysis with machine learning assisted classification, we show that the disease state is the main driver of distinction between EV samples, and largely unaffected by choice of isolation. Ultimately, this study describes a convenient SERS assay to retain accurate diagnostic information from clinical samples by overcoming differences in lipoprotein contamination according to isolation method.


Assuntos
Vesículas Extracelulares , Neoplasias , Cromatografia em Gel , Humanos , Lipoproteínas , Neoplasias/diagnóstico , Análise Espectral Raman , Ultracentrifugação
7.
J Nanobiotechnology ; 19(1): 250, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419056

RESUMO

BACKGROUND: Tetraspanin expression of extracellular vesicles (EVs) is often used as a surrogate for their detection and classification, a practice that typically assumes their consistent expression across EV sources. RESULTS: Here we demonstrate that there are distinct patterns in colocalization of tetraspanin expression of EVs enriched from a variety of in vitro and in vivo sources. We report an optimized method for the use of single particle antibody-capture and fluorescence detection to identify subpopulations according to tetraspanin expression and compare our findings with nanoscale flow cytometry. We found that tetraspanin profile is consistent from a given EV source regardless of isolation method, but that tetraspanin profiles are distinct across various sources. Tetraspanin profiles measured by flow cytometry do not totally agree, suggesting that limitations in subpopulation detection significantly impact apparent protein expression. We further analyzed tetraspanin expression of single EVs captured non-specifically, revealing that tetraspanin capture can bias the apparent multiplexed tetraspanin profile. Finally, we demonstrate that this bias can have significant impact on diagnostic sensitivity for tumor-associated EV surface markers. CONCLUSION: Our findings may reveal key insights into protein expression heterogeneity of EVs that better inform EV capture and detection platforms for diagnostic or other downstream use.


Assuntos
Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares , Tetraspaninas/metabolismo , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Fluorescência , Humanos , Células-Tronco Mesenquimais , Neoplasias Ovarianas/metabolismo , Sensibilidade e Especificidade , Tetraspaninas/genética
8.
ACS Sens ; 5(9): 2820-2833, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32935542

RESUMO

For more effective early-stage cancer diagnostics, there is a need to develop sensitive and specific, non- or minimally invasive, and cost-effective methods for identifying circulating nanoscale extracellular vesicles (EVs). Here, we report the utilization of a simple plasmonic scaffold composed of a microscale biosilicate substrate embedded with silver nanoparticles for surface-enhanced Raman scattering (SERS) analysis of ovarian and endometrial cancer EVs. These substrates are rapidly and inexpensively produced without any complex equipment or lithography. We extensively characterize the substrates with electron microscopy and outline a reproducible methodology for their use in analyzing EVs from in vitro and in vivo biofluids. We report effective chemical treatments for (i) decoration of metal surfaces with cysteamine to nonspecifically pull down EVs to SERS hotspots and (ii) enzymatic cleavage of extraluminal moieties at the surface of EVs that prevent localization of complementary chemical features (lipids/proteins) to the vicinity of the metal-enhanced fields. We observe a major loss of sensitivity for ovarian and endometrial cancer following enzymatic cleavage of EVs' extraluminal domain, suggesting its critical significance for diagnostic platforms. We demonstrate that the SERS technique represents an ideal tool to assess and measure the high heterogeneity of EVs isolated from clinical samples in an inexpensive, rapid, and label-free assay.


Assuntos
Vesículas Extracelulares , Nanopartículas Metálicas , Materiais Biocompatíveis , Biópsia Líquida , Porosidade , Prata
9.
Biochim Biophys Acta Biomembr ; 1862(10): 183394, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32562695

RESUMO

Membrane active peptides (MAPs) have gained wide interest due to their far reaching applications in drug discovery and drug delivery. The search for new MAPs, however, has been largely skewed with bias selecting for physicochemical parameters believed to be important for membrane activity, such as alpha helicity, cationicity and hydrophobicity. Here we carry out a search-and-find strategy to screen a 100,000-membered one-bead-one-compound (OBOC) combinatorial peptide library for lead compounds, agnostic of those physicochemical constraints. Such a synthetic strategy also permits expansion of our peptide repertoire to include unnatural amino acids. Using this approach, we discovered a structurally unique lead peptide LBF14, a linear 14-mer peptide, that induces gross morphological disruption of membranes, irrespective of membrane composition. Further, we demonstrate that the unique insertion mechanism of the peptide, visualized by spinning disc confocal microscopy and further analyzed by electron paramagnetic resonance measurements, may be the cause of this large scale membrane deformation. We also demonstrate the robustness, reproducibility, and potential application of this technique to discover and characterize new membrane active peptides that display activity by local insertion and subsequent allosteric effects leading to global membrane disruption.


Assuntos
Descoberta de Drogas , Proteínas de Membrana/química , Peptídeos/química , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Conformação Proteica
10.
J Hematol Oncol ; 12(1): 83, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31349855

RESUMO

The original article [1] contains an error in Fig. 2 whereby Fig. 2D has mistakenly been omitted. Fig. 2 can be viewed in its entirety - including Fig. 2D - in this Correction article.

11.
J Hematol Oncol ; 12(1): 56, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182116

RESUMO

BACKGROUND: α3ß1 integrin is a promising cancer biomarker and drug target. We previously identified a 9-amino-acid cyclic peptide LXY30 for detecting α3ß1 integrin on the surface of live tumor cells. This study was undertaken to characterize LXY30 in the detection, cellular function, imaging, and targeted delivery of in vitro and in vivo non-small cell lung cancer (NSCLC) models. METHODS: The whole-cell binding assay was performed by incubating NSCLC cells, extracellular vesicles (EVs), and peripheral blood mononuclear cells (PBMCs) with TentaGel resin beads coated with LXY30. In this study, we defined the nanosize EVs as exosomes, which were characterized by flow cytometry, transmission electron microscopy, dynamic light scattering, and Western blots. The function of LXY30 was determined by modulating the epidermal growth factor receptor (EGFR) signaling pathway by growth inhibition and Western blots. For in vivo biodistribution, mice bearing subcutaneous and intracranial NSCLC xenograft tumors were administrated intraveneously with LXY30-biotin/streptavidin-Cy5.5 complex and then analyzed for in vivo and ex vivo optical imaging and histopathology. RESULTS: We showed that LXY30 specifically and sensitively detected α3ß1 integrin-expressing NSCLC cells and tumor-derived exosomes. Tumor DNA isolated from LXY30-enriched plasma exosomes might be used to detect driver oncogenic mutations in patients with metastatic NSCLC. LXY30 only enriches tumor cells but not neutrophils, macrophages, or monocytes in the malignant pleural effusion of NSCLC patients for detecting genomic alterations by next-generation sequencing. LXY30 detected increased α3ß1 integrin expression on the EGFR-mutant NSCLC cells with acquired resistance to erlotinib compared to parental erlotinib-sensitive EGFR-mutant NSCLC cells. We further showed that LXY30 modulated the EGFR signaling pathway independently from another peptide ligand LXW64 targeting αvß3 integrin in erlotinib-resistant, EGFR-mutant H1975 cells. Analysis of The Cancer Genome Atlas (TCGA) revealed high α3 integrin expression was associated with poor prognosis in lung squamous cell carcinoma. LXY30-biotin/streptavidin-Cy5.5 complex had higher uptakes in the subcutaneous and intracranial xenografts of various α3ß1 integrin-expressing lung adenocarcinoma and patient-derived lung squamous cell carcinoma xenografts while sparing the surrounding normal tissues. CONCLUSION: LXY30 is a promising peptide for the cancer diagnosis and in vivo targeted delivery of imaging agents and cancer drugs in NSCLC, independent of histology and tumor genotype.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Integrina alfa3beta1/genética , Neoplasias Pulmonares/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Modelos Animais de Doenças , Feminino , Humanos , Ligantes , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Peptídeos
12.
FASEB J ; 33(5): 5836-5849, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753093

RESUMO

We have established early-gestation chorionic villus-derived placenta mesenchymal stromal cells (PMSCs) as a potential treatment for spina bifida (SB), a neural tube defect. Our preclinical studies demonstrated that PMSCs have the potential to cure hind limb paralysis in the fetal lamb model of SB via a paracrine mechanism. PMSCs exhibit neuroprotective function by increasing cell number and neurites, as shown by indirect coculture and direct addition of PMSC-conditioned medium to the staurosporine-induced apoptotic human neuroblastoma cell line, SH-SY5Y. PMSC-conditioned medium suppressed caspase activity in apoptotic SH-SY5Y cells, suggesting that PMSC secretome contributes to neuronal survival after injury. As a part of PMSC secretome, PMSC exosomes were isolated and extensively characterized; their addition to apoptotic SH-SY5Y cells mediated an increase in neurites, suggesting that they exhibit neuroprotective function. Proteomic and RNA sequencing analysis revealed that PMSC exosomes contain several proteins and RNAs involved in neuronal survival and development. Galectin 1 was highly expressed on the surface of PMSCs and PMSC exosomes. Preincubation of exosomes with anti-galectin 1 antibody decreased their neuroprotective effect, suggesting that PMSC exosomes likely impart their effect via binding of galectin 1 to cells. Future studies will include in-depth analyses of the role of PMSC exosomes on neuroprotection and their clinical applications.-Kumar, P., Becker, J. C., Gao, K., Carney, R. P., Lankford, L., Keller, B. A., Herout, K., Lam, K. S., Farmer, D. L., Wang, A. Neuroprotective effect of placenta-derived mesenchymal stromal cells: role of exosomes.


Assuntos
Células-Tronco Mesenquimais/citologia , Placenta/citologia , Disrafismo Espinal/terapia , Células Estromais/citologia , Animais , Apoptose , Bovinos , Linhagem Celular Tumoral , Técnicas de Cocultura , Meios de Cultivo Condicionados/química , Exossomos/metabolismo , Feminino , Galectina 1/fisiologia , Humanos , Transplante de Células-Tronco Mesenquimais , Mesoderma/citologia , Defeitos do Tubo Neural/terapia , Neuritos/metabolismo , Estresse Oxidativo , Gravidez , Ovinos , Transdução de Sinais , Estaurosporina
13.
Semin Cancer Biol ; 56: 56-71, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30261277

RESUMO

Multi-drug resistance (MDR) is a curious bottleneck in cancer research and chemotherapy, whereby some cells rapidly adapt to the tumor microenvironment via a myriad of heterogeneous metabolic activities. Despite being a major impediment to treatment, there is a silver lining: control over metabolic regulation could be an effective approach to overcome or correct resistance pathways. In this critical review, we comprehensively and carefully curated and analyzed large networks of previously identified proteins associated with metabolic adaptation in MDR. We employed data and text mining to study and categorize more than 600 studies in PubMed, with particular focus on AMPK, a central and fundamental modulator in the energy metabolism network that has been specifically implicated in cancer MDR pathways. We have identified one protein set of metabolic adaptations with 137 members closely related to cancer MDR processes, and a second protein set with 165 members derived from AMPK-based networks, with 28 proteins found at the intersection between the two sets. Furthermore, according to genomics analysis of the cancer genome atlas (TCGA) provisional data, the highest alteration frequency (80.0%) of the genes encoding the intersected proteins (28 proteins), ranked three cancer types with quite remarkable significance across 166 studies. The hierarchical relationships of the entire identified gene and protein networks indicate broad correlations in AMPK-mediated metabolic regulation pathways, which we use decipher and depict the metabolic roles of AMPK and demonstrate the potential of metabolic control for therapeutic intervention in MDR.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/patologia
14.
Anal Chem ; 90(23): 13969-13977, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30358386

RESUMO

Traditional high-throughput drug combination screening requires automatic pipetting of drugs into high-density microtiter plates. Here, a drug-on-pillar platform is proposed for efficient combination drug screening. Using the proposed approach, combination drug screening can be carried out in a plug-and-play manner, allowing for high-throughput screening of large permutations of drug combinations at various concentrations, such that drug dispensing and cell-based screening can be temporally separated and therefore can potentially be performed at distant laboratories. The dispensing is implemented using our recently developed microfluidic pneumatic printing platform, which features a low-cost disposable cartridge that minimizes cross contamination. Moreover, our previously developed drug nanoformulation method with amphiphilic telodendrimers has been utilized to maintain drug stability in a dry form, allowing for convenient drug storage, shipping, and subsequent rehydration. Combining the features described above, we have implemented a 1260-spot drug combination array to study the effect of paired drugs against MDA-MB-231 triple negative human breast cancer cells. This study supports the feasibility of the drug-on-pillar platform for combination drug screening and has provided valuable insight into drug combination efficacy against breast cancer.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Técnicas Analíticas Microfluídicas , Impressão Tridimensional , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
15.
Anal Chem ; 90(9): 5833-5840, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29633611

RESUMO

In this paper, we introduce a novel microfluidic combinatorial synthesis platform, referred to as Microfluidic Print-to-Synthesis (MPS), for custom high-throughput and automated synthesis of a large number of unique peptides in a microarray format. The MPS method utilizes standard Fmoc chemistry to link amino acids on a polyethylene glycol (PEG)-functionalized microdisc array. The resulting peptide microarrays permit rapid screening for interactions with molecular targets or live cells, with low nonspecific binding. Such combinatorial peptide microarrays can be reliably prepared at a spot size of 200 µm with 1 mm center-to-center distance, dimensions that require only minimal reagent consumption (less than 30 nL per spot per coupling reaction). The MPS platform has a scalable design for extended multiplexibility, allowing for 12 different building blocks and coupling reagents to be dispensed in one microfluidic cartridge in the current format, and could be further scaled up. As proof of concept for the MPS platform, we designed and constructed a focused tetrapeptide library featuring 2560 synthetic peptide sequences, capped at the N-terminus with 4-[( N'-2-methylphenyl)ureido]phenylacetic acid. We then used live human T lymphocyte Jurkat cells as a probe to screen the peptide microarrays for their interaction with α4ß1 integrin overexpressed and activated on these cells. Unlike the one-bead-one-compound approach that requires subsequent decoding of positive beads, each spot in the MPS array is spatially addressable. Therefore, this platform is an ideal tool for rapid optimization of lead compounds found in nature or discovered from diverse combinatorial libraries, using either biochemical or cell-based assays.


Assuntos
Técnicas de Química Combinatória , Técnicas Analíticas Microfluídicas , Peptídeos/análise , Impressão , Análise Serial de Proteínas , Humanos , Células Jurkat , Tamanho da Partícula , Biblioteca de Peptídeos
16.
Biomaterials ; 161: 203-215, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421556

RESUMO

Conventional drug delivery systems contain substantial amounts of excipients such as polymers and lipids, typically with low drug loading capacity and lack of intrinsic traceability and multifunctionality. Here, we report fully active pharmaceutical ingredient nanoparticles (FAPIN) which were self-assembled by minimal materials, but seamlessly orchestrated versatile theranostic functionalities including: i) self-delivery: no additional carriers were required, all components in the formulation are active pharmaceutical ingredients; ii) self-indicating: no additional imaging tags were needed. The nanoparticle itself was composed of 100% imaging agents, so that the stability, drug release, subcellular dispositions, biodistribution and therapeutic efficacy of FAPINs can be readily visualized by ample imaging capacities, including energy transfer relay dominated, dual-color fluorogenic property, near-infrared fluorescence imaging and magnetic resonance imaging; and iii) highly effective trimodality cancer therapy, encompassing photodynamic-, photothermal- and chemo-therapies. FAPINs were fabricated with very simple material (a photosensitizer-drug conjugate), unusually achieved ∼10 times better in vitro antitumor activity than their free counterparts, and were remarkably efficacious in patient-derived xenograft (PDX) glioblastoma multiforme animal models. Only two doses of FAPINs enabled complete ablation of highly-malignant PDX tumors in 50% of the mice.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Imagem Multimodal/métodos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Animais , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias/terapia , Fototerapia
17.
Anal Chem ; 89(10): 5357-5363, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28345878

RESUMO

Extracellular vesicles (EVs), including exosomes, are circulating nanoscale particles heavily implicated in cell signaling and can be isolated in vast numbers from human biofluids. Study of their molecular profiling and materials properties is currently underway for purposes of describing a variety of biological functions and diseases. However, the large, and as yet largely unquantified, variety of EV subpopulations differing in composition, size, and likely function necessitates characterization schemes capable of measuring single vesicles. Here we describe the first application of multispectral optical tweezers (MS-OTs) to single vesicles for molecular fingerprinting of EV subpopulations. This versatile imaging platform allows for sensitive measurement of Raman chemical composition (e.g., variation in protein, lipid, cholesterol, nucleic acids), coupled with discrimination by fluorescence markers. For exosomes isolated by ultracentrifugation, we use MS-OTs to interrogate the CD9-positive subpopulations via antibody fluorescence labeling and Raman spectra measurement. We report that the CD9-positive exosome subset exhibits reduced component concentration per vesicle and reduced chemical heterogeneity compared to the total purified EV population. We observed that specific vesicle subpopulations are present across exosomes isolated from cell culture supernatant of several clonal varieties of mesenchymal stromal cells and also from plasma and ascites isolated from human ovarian cancer patients.


Assuntos
Exossomos/metabolismo , Pinças Ópticas , Tetraspanina 29/análise , Animais , Anticorpos/imunologia , Feminino , Corantes Fluorescentes/química , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Análise de Componente Principal , Ratos , Análise Espectral Raman , Tetraspanina 29/imunologia
18.
Adv Biosyst ; 1(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-29911169

RESUMO

All cells expel a variety of nano-sized extracellular vesicles (EVs), including exosomes, with composition reflecting the cells' biological state. Cancer pathology is dramatically mediated by EV trafficking via key proteins, lipids, metabolites, and microRNAs. Recent proteomics evidence suggests that tumor-associated exosomes exhibit distinct expression of certain membrane proteins, rendering those proteins as attractive targets for diagnostic or therapeutic application. Yet, it is not currently feasible to distinguish circulating EVs in complex biofluids according to their tissue of origin or state of disease. Here we demonstrate peptide binding to tumor-associated EVs via overexpressed membrane protein. We find that SKOV-3 ovarian tumor cells and their released EVs express α3ß1 integrin, which can be targeted by our in-house cyclic nonapeptide, LXY30. After measuring bulk SKOV-3 EV association with LXY30 by flow cytometry, Raman spectral analysis of laser-trapped single exosomes with LXY30-dialkyne conjugate enabled us to differentiate cancer-associated exosomes from non-cancer exosomes. Furthermore, we introduce the foundation for a highly specific detection platform for tumor-EVs in solution with biosensor surface-immobilized LXY30. LXY30 not only exhibits high specificity and affinity to α3ß1 integrin-expressing EVs, but also reduces EV uptake into SKOV-3 parent cells, demonstrating the possibility for therapeutic application.

19.
Nat Commun ; 7: 13520, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901019

RESUMO

Up to 80% of the cost of vaccination programmes is due to the cold chain problem (that is, keeping vaccines cold). Inexpensive, biocompatible additives to slow down the degradation of virus particles would address the problem. Here we propose and characterize additives that, already at very low concentrations, improve the storage time of adenovirus type 5. Anionic gold nanoparticles (10-8-10-6 M) or polyethylene glycol (PEG, molecular weight ∼8,000 Da, 10-7-10-4 M) increase the half-life of a green fluorescent protein expressing adenovirus from ∼48 h to 21 days at 37 °C (from 7 to >30 days at room temperature). They replicate the known stabilizing effect of sucrose, but at several orders of magnitude lower concentrations. PEG and sucrose maintained immunogenicity in vivo for viruses stored for 10 days at 37 °C. To achieve rational design of viral-vaccine stabilizers, our approach is aided by simplified quantitative models based on a single rate-limiting step.


Assuntos
Vacinas contra Adenovirus/farmacologia , Estabilidade de Medicamentos , Excipientes/química , Imunogenicidade da Vacina , Vacinas contra Adenovirus/química , Vacinas contra Adenovirus/imunologia , Animais , Temperatura Baixa , Armazenamento de Medicamentos/métodos , Estudos de Viabilidade , Ouro/química , Meia-Vida , Nanopartículas Metálicas/química , Camundongos , Modelos Animais , Modelos Biológicos , Polietilenoglicóis/química , Sacarose/química , Fatores de Tempo
20.
J Extracell Vesicles ; 4: 28533, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26649679

RESUMO

Current analysis of exosomes focuses primarily on bulk analysis, where exosome-to-exosome variability cannot be assessed. In this study, we used Raman spectroscopy to study the chemical composition of single exosomes. We measured spectra of individual exosomes from 8 cell lines. Cell-line-averaged spectra varied considerably, reflecting the variation in total exosomal protein, lipid, genetic, and cytosolic content. Unexpectedly, single exosomes isolated from the same cell type also exhibited high spectral variability. Subsequent spectral analysis revealed clustering of single exosomes into 4 distinct groups that were not cell-line specific. Each group contained exosomes from multiple cell lines, and most cell lines had exosomes in multiple groups. The differences between these groups are related to chemical differences primarily due to differing membrane composition. Through a principal components analysis, we identified that the major sources of spectral variation among the exosomes were in cholesterol content, relative expression of phospholipids to cholesterol, and surface protein expression. For example, exosomes derived from cancerous versus non-cancerous cell lines can be largely separated based on their relative expression of cholesterol and phospholipids. We are the first to indicate that exosome subpopulations are shared among cell types, suggesting distributed exosome functionality. The origins of these differences are likely related to the specific role of extracellular vesicle subpopulations in both normal cell function and carcinogenesis, and they may provide diagnostic potential at the single exosome level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA