Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791253

RESUMO

The application of metal-based nanoparticles (mNPs) in cancer therapy and diagnostics (theranostics) has been a hot research topic since the early days of nanotechnology, becoming even more relevant in recent years. However, the clinical translation of this technology has been notably poor, with one of the main reasons being a lack of understanding of the disease and conceptual errors in the design of mNPs. Strikingly, throughout the reported studies to date on in vivo experiments, the concepts of "tumor targeting" and "tumor cell targeting" are often intertwined, particularly in the context of active targeting. These misconceptions may lead to design flaws, resulting in failed theranostic strategies. In the context of mNPs, tumor targeting can be described as the process by which mNPs reach the tumor mass (as a tissue), while tumor cell targeting refers to the specific interaction of mNPs with tumor cells once they have reached the tumor tissue. In this review, we conduct a critical analysis of key challenges that must be addressed for the successful targeting of either tumor tissue or cancer cells within the tumor tissue. Additionally, we explore essential features necessary for the smart design of theranostic mNPs, where 'smart design' refers to the process involving advanced consideration of the physicochemical features of the mNPs, targeting motifs, and physiological barriers that must be overcome for successful tumor targeting and/or tumor cell targeting.


Assuntos
Nanopartículas Metálicas , Neoplasias , Nanomedicina Teranóstica , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico , Neoplasias/patologia , Nanomedicina Teranóstica/métodos , Animais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos
2.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412549

RESUMO

Alzheimer's disease is the main cause of aging-associated dementia, for which there is no effective treatment. In this work, we reanalyze the information of a previous genome wide association study, using a new pipeline design to identify novel potential drugs. With this approach, ribonucleoside-diphosphate reductase gene (RRM2B) emerged as a candidate target and its inhibitor, 2', 2'-difluoro 2'deoxycytidine (gemcitabine), as a potential pharmaceutical drug against Alzheimer's disease. We functionally verified the effect of inhibiting the RRM2B homolog, rnr-2, in an Alzheimer's model of Caenorhabditis elegans, which accumulates human Aß1-42 peptide to an irreversible paralysis. RNA interference against rnr-2 and also treatment with 200 ng/ml of gemcitabine, showed an improvement of the phenotype. Gemcitabine treatment increased the intracellular ATP level 3.03 times, which may point to its mechanism of action. Gemcitabine has been extensively used in humans for cancer treatment but at higher concentrations. The 200 ng/ml concentration did not exert a significant effect over cell cycle, or affected cell viability when assayed in the microglia N13 cell line. Thus, the inhibitory drug of the RRM2B activity could be of potential use to treat Alzheimer's disease and particularly gemcitabine might be considered as a promising candidate to be repurposed for its treatment.


Assuntos
Doença de Alzheimer , Caenorhabditis elegans , Desoxicitidina , Modelos Animais de Doenças , Caenorhabditis elegans/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Animais , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Humanos , Gencitabina , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Interferência de RNA
3.
Adv Healthc Mater ; 13(12): e2304044, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38303644

RESUMO

Iron Oxide Nanoparticles (IONPs) hold the potential to exert significant influence on fighting cancer through their theranostics capabilities as contrast agents (CAs) for magnetic resonance imaging (MRI) and as mediators for magnetic hyperthermia (MH). In addition, these capabilities can be improved by doping IONPs with other elements. In this work, the synthesis and characterization of single-core and alloy ZnFe novel magnetic nanoparticles (MNPs), with improved magnetic properties and more efficient magnetic-to-heat conversion, are reported. Remarkably, the results challenge classical nucleation and growth theories, which cannot fully predict the final size/shape of these nanoparticles and, consequently, their magnetic properties, implying the need for further studies to better understand the nanomagnetism phenomenon. On the other hand, leveraging the enhanced properties of these new NPs, successful tumor therapy by MH is achieved following their intravenous administration and tumor accumulation via the enhanced permeability and retention (EPR) effect. Notably, these results are obtained using a single low dose of MNPs and a single exposure to clinically suitable alternating magnetic fields (AMF). Therefore, as far as the authors are aware, for the first time, the successful application of intravenously administered MNPs for MRI-tracked MH tumor therapy in passively targeted tumor xenografts using clinically suitable conditions is demonstrated.


Assuntos
Hipertermia Induzida , Imageamento por Ressonância Magnética , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Zinco/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Meios de Contraste/química , Nanopartículas de Magnetita/química , Ferro/química
4.
Sci Rep ; 13(1): 21324, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044375

RESUMO

Triple negative breast cancer (TNBC) is highly immunogenic and high levels of tumor infiltrating lymphocytes (TILs) have been associated with a better prognosis and higher probability to achieve pathological complete response. Here, we explore the potential role of stromal TILs level and composition as a prognostic and predictive biomarker in TNBC. 195 Tumor biospecimens from patients diagnosed with TNBC were included. Stromal TILs (sTILs), positive CD4/CD8 cells were evaluated. Differences in clinic-pathological characteristics according to immune infiltration were assessed. The predictive and prognostic value of immune infiltration was analyzed by multivariate models. Higher immune infiltration was observed in patients with favorable clinical-pathological features. Survival analysis showed that longer overall survival times were observed in patients with a higher infiltration of sTILs (p = 0.00043), CD4 + (p = 0.0074) and CD8 + (p = 0.008). In the multivariate analysis, low levels of sTILs were found to be associated with a higher mortality hazard (HR: 1.59, 95% CI 1.01-2.48). CD4 and CD8 immune infiltration were associated with higher odds for pathological complete response (OR: 1.20, 95% CI 1.00-1.46, OR: 1.28, 1.02-1.65, respectively). Our results suggest that immune infiltration could be used as a prognostic marker for overall survival in TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Linfócitos do Interstício Tumoral , Colômbia , Prognóstico , Biomarcadores , Biomarcadores Tumorais/análise
5.
J Mater Chem B ; 11(46): 11110-11120, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37947078

RESUMO

Superparamagnetic iron oxide nanoparticles have hogged the limelight in different fields of nanotechnology. Surprisingly, notwithstanding the prominent role played as agents in magnetic hyperthermia treatments, the effects of nanoparticle size and shape on the magnetic hyperthermia performance have not been entirely elucidated yet. Here, spherical or cubical magnetic nanoparticles synthesized by a thermal decomposition method with the same magnetic and hyperthermia properties are evaluated. Interestingly, spherical nanoparticles displayed significantly higher magnetic relaxivity than cubic nanoparticles; however, comparable differences were not observed in specific absorption rate (SAR), pointing out the need for additional research to better understand the connection between these two parameters. Additionally, the as-synthetized spherical nanoparticles showed negligible cytotoxicity and, therefore, were tested in vivo in tumor-bearing mice. Following intratumoral administration of these spherical nanoparticles and a single exposure to alternating magnetic fields (AMF) closely mimicking clinical conditions, a significant delay in tumor growth was observed. Although further in vivo experiments are warranted to optimize the magnetic hyperthermia conditions, our findings support the great potential of these nanoparticles as magnetic hyperthermia mediators for tumor therapy.


Assuntos
Hipertermia Induzida , Neoplasias , Camundongos , Animais , Hipertermia Induzida/métodos , Campos Magnéticos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética
6.
Sci Rep ; 13(1): 13119, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573450

RESUMO

Gastric cancer (GC) is the fifth most frequent malignancy worldwide and has a high mortality rate related to late diagnosis. Although the gold standard for the GC diagnosis is endoscopy with biopsy, nonetheless, it is not cost-effective and is invasive for the patient. The Human leukocyte antigen G (HLA-G) molecule is a checkpoint of the immune response. Its overexpression in cancer is associated with immune evasion, metastasis, poor prognosis, and lower overall survival. We evaluate the plasma levels of soluble HLA-G, (sHLA-G) in patients with GC and benign gastric pathologies using an ELISA test. A higher concentration of sHLA-G in patients with GC than in those with benign pathologies, higher levels of plasma sHLA-G in women with GC compared with men and significant differences in the sHLA-G levels between the benign gastric pathologies evaluated, was our main findings. As no significant differences were found between the GC assessed stages in our study population, we suggest that sHLA-G is not an adequate marker for staging GC, but it does have diagnostic potential. In addition to providing information on the potential of sHLA-G as a diagnostic marker for GC, our study demonstrate that HLA-G molecules can be found in the membrane of exosomes, which highlights the need to perform studies with a larger number of samples to explore the functional implications of HLA-G positive exosomes in the context of gastric cancer, and to determine the clinical significance and possible applications of these findings in the development of non-invasive diagnostic methods.


Assuntos
Antígenos HLA-G , Neoplasias Gástricas , Masculino , Humanos , Feminino , Neoplasias Gástricas/diagnóstico , Detecção Precoce de Câncer , Estadiamento de Neoplasias , Biomarcadores
7.
Nanomedicine ; 52: 102695, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394106

RESUMO

Chitosan-functionalized magnetite/poly(ε-caprolactone) nanoparticles were formulated by interfacial polymer disposition plus coacervation, and loaded with gemcitabine. That (core/shell)/shell nanostructure was confirmed by electron microscopy, elemental analysis, electrophoretic, and Fourier transform infrared characterizations. A short-term stability study proved the protection against particle aggregation provided by the chitosan shell. Superparamagnetic properties of the nanoparticles were characterized in vitro, while the definition of the longitudinal and transverse relaxivities was an initial indication of their capacity as T2 contrast agents. Safety of the particles was demonstrated in vitro on HFF-1 human fibroblasts, and ex vivo on SCID mice. The nanoparticles demonstrated in vitro pH- and heat-responsive gemcitabine release capabilities. In vivo magnetic resonance imaging studies and Prussian blue visualization of iron deposits in tissue samples defined the improvement in nanoparticle targeting into the tumor when using a magnetic field. This tri-stimuli (magnetite/poly(ε-caprolactone))/chitosan nanostructure could find theranostic applications (biomedical imaging & chemotherapy) against tumors.


Assuntos
Quitosana , Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Camundongos , Animais , Humanos , Óxido Ferroso-Férrico/uso terapêutico , Quitosana/uso terapêutico , Medicina de Precisão , Camundongos SCID , Nanopartículas de Magnetita/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Gencitabina , Imageamento por Ressonância Magnética/métodos
8.
Sci Rep ; 13(1): 3017, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810585

RESUMO

We know little about how smoking prevention interventions might leverage social network structures to enhance protective social norms. In this study we combined statistical and network science methods to explore how social networks influence social norms related to adolescent smoking in school-specific settings in Northern Ireland and Colombia. Pupils (12-15 years old) participated in two smoking prevention interventions in both countries (n = 1344). A Latent Transition Analysis identified three groups characterized by descriptive and injunctive norms towards smoking. We employed a Separable Temporal Random Graph Model to analyze homophily in social norms and conducted a descriptive analysis of the changes in the students' and their friends' social norms over time to account for social influence. The results showed that students were more likely to be friends with others who had social norms against smoking. However, students with social norms favorable towards smoking had more friends with similar views than the students with perceived norms against smoking, underlining the importance of network thresholds. Our results support the notation that the ASSIST intervention takes advantage of friendship networks to leverage greater change in the students' smoking social norms than the Dead Cool intervention, reiterating that social norms are subject to social influence.


Assuntos
Prevenção do Hábito de Fumar , Normas Sociais , Humanos , Adolescente , Criança , Fumar , Estudantes , Amigos , Grupo Associado , Rede Social
9.
Eur J Med Chem ; 243: 114730, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36088758

RESUMO

The stereoselective addition of ethyl acetate enolate to the C═N bond of N-tert-butylsulfinylimines has been investigated in depth. A significant effect of the LHMDS amount and the N-sulfinylimine nature on the stereoselectivity of the process was observed. Conditions were found where sulfinylimines of differently substituted salicylaldehydes derivatives, ethyl acetate, and LHMDS afforded the corresponding addition products as a single diastereomer in good yields. The developed protocol was successfully applied to the first stereoselective synthesis of differently substituted 4-amino-3,4-dihydrocoumarin derivatives. Computational models confirmed the prominent role of the ortho aryl substituent in the stereoselectivity of the process. A significant and selective cytotoxic activity against Glioblastoma Multiforme (GBM) cancer line has been determined for the noncyclic hydroxy ester derivative.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Estereoisomerismo , Ésteres/farmacologia , Ésteres/química , Antineoplásicos/farmacologia
10.
Front Oncol ; 12: 910976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924147

RESUMO

Triple-negative breast cancer (TNBC) occurs more frequently in young (<50 years) non-Hispanic black and Hispanic/Latina women. It is considered the most aggressive subtype of breast cancer, although, recently, immune infiltrate has been associated with long-term survival, lower risk of death and recurrence, and response to neoadjuvant chemotherapy. The aim of this review was to evaluate the clinical impact of the immune infiltrate in TNBC by discussing whether its prognostic value varies across different populations. A comprehensive systematic search in databases such as PubMed and Web of Science was conducted to include papers focused on tumor-infiltrating lymphocytes (TILs) in TNBC in different population groups and that were published before January 2021. TNBC patients with higher levels of TILs had longer overall survival and disease-free survival times compared with TNBC patients with low TIL levels. Similar results were observed for CD4+, CD8+ TIL populations. On the other hand, patients with high TIL levels showed a higher rate of pathological complete response regardless of the population group (Asian, European, and American). These results altogether suggest that TIL subpopulations might have a prognostic role in TNBC, but the underlying mechanism needs to be elucidated. Although the prognosis value of TILs was not found different between the population groups analyzed in the revised literature, further studies including underrepresented populations with different genetic ancestries are still necessary to conclude in this regard.

11.
Pharmaceutics ; 14(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35336012

RESUMO

The development of nanoplatforms prepared to perform both multimodal imaging and combined therapies in a single entity is a fast-growing field. These systems are able to improve diagnostic accuracy and therapy success. Multicomponent Nanoparticles (MCNPs), composed of iron oxide and gold, offer new opportunities for Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) diagnosis, as well as combined therapies based on Magnetic Hyperthermia (MH) and Photothermal Therapy (PT). In this work, we describe a new seed-assisted method for the synthesis of Au@Fe Nanoparticles (NPs) with a flower-like structure. For biomedical purposes, Au@Fe NPs were functionalized with a PEGylated ligand, leading to high colloidal stability. Moreover, the as-obtained Au@Fe-PEG NPs exhibited excellent features as both MRI and CT Contrast Agents (CAs), with high r2 relaxivity (60.5 mM-1⋅s-1) and X-ray attenuation properties (8.8 HU mM-1⋅HU). In addition, these nanoflowers presented considerable energy-to-heat conversion under both Alternating Magnetic Fields (AMFs) (∆T ≈ 2.5 °C) and Near-Infrared (NIR) light (∆T ≈ 17 °C). Finally, Au@Fe-PEG NPs exhibited very low cytotoxicity, confirming their potential for theranostics applications.

12.
Soft Matter ; 17(46): 10580, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806102

RESUMO

Correction for 'Clickable iron oxide NPs based on catechol derived ligands: synthesis and characterization' by Esther Pozo-Torres et al., Soft Matter, 2020, 16, 3257-3266, DOI: 10.1039/C9SM02512J.

13.
Biomater Sci ; 9(23): 7984-7995, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34710207

RESUMO

Passive tumor targeting via the enhanced permeability and retention (EPR) effect has long been considered the most effective mechanism for the accumulation of nanoparticles inside solid tumors. However, several studies have demonstrated that the EPR effect is largely dependent on the tumor type and location. Particularly complex is the situation in brain tumors, where the presence of the blood-brain tumor barrier (BBTB) adds an extra limiting factor in reaching the tumor interstitium. However, it remains unclear whether these restraints imposed by the BBTB prevent the EPR effect from acting as an efficient tumor targeting mechanism for metallic nanoparticles. In this work, we have studied the EPR effect of metallic magnetic nanoparticles (MMNPs) in a glioblastoma (GBM) model by parametric MRI. Our results showed that only MMNPs ≤50 nm could reach the tumor interstitium, whereas larger MMNPs were unable to cross the BBTB. Furthermore, even for MMNPs around 30-50 nm, the amount of them found within the tumor was scarce and restricted to the vicinity of large tumor vessels, indicating that the BBTB strongly limits the passive accumulation of metallic nanoparticles in brain tumors. Therefore, active targeting becomes the most reasonable strategy to target metallic nanoparticles to GBMs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Nanopartículas Metálicas , Nanopartículas , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Humanos , Permeabilidade
14.
J Mater Chem B ; 9(24): 4963-4980, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34114575

RESUMO

(Maghemite/poly(d,l-lactide-co-glycolide))/chitosan (core/shell)/shell nanoparticles have been prepared reproducibly by nanoprecipitation solvent evaporation plus coacervation (production performance ≈ 45%, average size ≈ 325 nm). Transmission electron microscopy, energy dispersive X-ray spectroscopy, electrophoretic determinations, and X-ray diffraction patterns demonstrated the satisfactory embedment of iron oxide nanocores within the solid polymer matrix and the formation of an external shell of chitosan in the nanostructure. The adequate magnetic responsiveness of the nanocomposites was characterized in vitro by hysteresis cycle determinations and by visualization of the nanosystem under the influence of a 0.4 T permanent magnet. Safety and biocompatibility of the (core/shell)/shell particles were based on in vitro haemocompatibility studies and cytotoxicity tests against HFF-1 human foreskin fibroblasts and on ex vivo toxicity assessments on tissue samples from Balb/c mice. Transversal relaxivities, determined in vitro at a low magnetic field of 1.44 T, demonstrated their capability as T2 contrast agents for magnetic resonance imaging, being comparable to that of some iron oxide-based contrast agents. Heating properties were evaluated in a high frequency alternating electromagnetic gradient: a constant maximum temperature of ≈46 °C was generated within ≈50 min, while antitumour hyperthermia tests on T-84 colonic adenocarcinoma cells proved the relevant decrease in cell viability (to ≈ 39%) when treated with the nanosystem under the influence of that electromagnetic field. Finally, in vivo magnetic resonance imaging studies and ex vivo histology determinations of iron deposits postulated the efficacy of chitosan to provide long-circulating capabilities to the nanocomposites, retarding nanoparticle recognition by the mononuclear phagocyte system. To our knowledge, this is the first study describing such a type of biocompatible and long-circulating nanoplatform with promising theranostic applications (biomedical imaging and hyperthermia) against cancer.


Assuntos
Quitosana/química , Engenharia , Hipertermia Induzida , Nanopartículas de Magnetita/química , Nanocompostos/química , Neoplasias/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanocompostos/uso terapêutico
15.
Pharmaceutics ; 13(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804636

RESUMO

In this study, we report the synthesis of gold-coated iron oxide nanoparticles capped with polyvinylpyrrolidone (Fe@Au NPs). The as-synthesized nanoparticles (NPs) exhibited good stability in aqueous media and excellent features as contrast agents (CA) for both magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Additionally, due to the presence of the local surface plasmon resonances of gold, the NPs showed exploitable "light-to-heat" conversion ability in the near-infrared (NIR) region, a key attribute for effective photothermal therapies (PTT). In vitro experiments revealed biocompatibility as well as excellent efficiency in killing glioblastoma cells via PTT. The in vivo nontoxicity of the NPs was demonstrated using zebrafish embryos as an intermediate step between cells and rodent models. To warrant that an effective therapeutic dose was achieved inside the tumor, both intratumoral and intravenous routes were screened in rodent models by MRI and CT. The pharmacokinetics and biodistribution confirmed the multimodal imaging CA capabilities of the Fe@AuNPs and revealed constraints of the intravenous route for tumor targeting, dictating intratumoral administration for therapeutic applications. Finally, Fe@Au NPs were successfully used for an in vivo proof of concept of imaging-guided focused PTT against glioblastoma multiforme in a mouse model.

16.
Inorg Chem ; 60(1): 152-160, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33201695

RESUMO

We describe a wet chemical method for the synthesis of uniform and well-dispersed dysprosium vanadate (DyVO4) and holmium vanadate (HoVO4) nanoparticles with an almost spherical shape and a mean size of ∼60 nm and their functionalization with poly(acrylic acid). The transverse magnetic relaxivity of both systems at 9.4 T is analyzed on the basis of magnetic susceptibility and magnetization measurements in order to evaluate their potential for application as high-field MRI contrast agents. In addition, the X-ray attenuation properties of these systems are also studied to determine their capabilities as computed tomography contrast agent. Finally, the colloidal stability under physiological pH conditions and the cytotoxicity of the functionalized NPs are also addressed to assess their suitability for bioimaging applications.


Assuntos
Meios de Contraste/química , Disprósio/química , Hólmio/química , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Vanadatos/química , Resinas Acrílicas/química , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/farmacologia , Disprósio/farmacologia , Hólmio/farmacologia , Humanos , Campos Magnéticos , Nanopartículas/química , Células PC-3 , Tamanho da Partícula , Vanadatos/farmacologia
17.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916960

RESUMO

STIM1 is an endoplasmic reticulum (ER) protein that modulates the activity of a number of Ca2+ transport systems. By direct physical interaction with ORAI1, a plasma membrane Ca2+ channel, STIM1 activates the ICRAC current, whereas the binding with the voltage-operated Ca2+ channel CaV1.2 inhibits the current through this latter channel. In this way, STIM1 is a key regulator of Ca2+ signaling in excitable and non-excitable cells, and altered STIM1 levels have been reported to underlie several pathologies, including immunodeficiency, neurodegenerative diseases, and cancer. In both sporadic and familial Alzheimer's disease, a decrease of STIM1 protein levels accounts for the alteration of Ca2+ handling that compromises neuronal cell viability. Using SH-SY5Y cells edited by CRISPR/Cas9 to knockout STIM1 gene expression, this work evaluated the molecular mechanisms underlying the cell death triggered by the deficiency of STIM1, demonstrating that STIM1 is a positive regulator of ITPR3 gene expression. ITPR3 (or IP3R3) is a Ca2+ channel enriched at ER-mitochondria contact sites where it provides Ca2+ for transport into the mitochondria. Thus, STIM1 deficiency leads to a strong reduction of ITPR3 transcript and ITPR3 protein levels, a consequent decrease of the mitochondria free Ca2+ concentration ([Ca2+]mit), reduction of mitochondrial oxygen consumption rate, and decrease in ATP synthesis rate. All these values were normalized by ectopic expression of ITPR3 in STIM1-KO cells, providing strong evidence for a new mode of regulation of [Ca2+]mit mediated by the STIM1-ITPR3 axis.


Assuntos
Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Técnicas de Inativação de Genes , Humanos , Proteínas de Neoplasias/genética , Molécula 1 de Interação Estromal/genética
18.
Top Curr Chem (Cham) ; 378(3): 40, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382832

RESUMO

Iron oxide nanoparticles (IONPs) have emerged as a promising alternative to conventional contrast agents (CAs) for magnetic resonance imaging (MRI). They have been extensively investigated as CAs due to their high biocompatibility and excellent magnetic properties. Furthermore, the ease of functionalization of their surfaces with different types of ligands (antibodies, peptides, sugars, etc.) opens up the possibility of carrying out molecular MRI. Thus, IONPs functionalized with epithelial growth factor receptor antibodies, short peptides, like RGD, or aptamers, among others, have been proposed for the diagnosis of various types of cancer, including breast, stomach, colon, kidney, liver or brain cancer. In addition to cancer diagnosis, different types of IONPs have been developed for other applications, such as the detection of brain inflammation or the early diagnosis of thrombosis. This review addresses key aspects in the development of IONPs for MRI applications, namely, synthesis of the inorganic core, functionalization processes to make IONPs biocompatible and also to target them to specific tissues or cells, and finally in vivo studies in animal models, with special emphasis on tumor models.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Animais , Humanos
19.
Sci Rep ; 10(1): 6580, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313105

RESUMO

Tumor invasion requires efficient cell migration, which is achieved by the generation of persistent and polarized lamellipodia. The generation of lamellipodia is supported by actin dynamics at the leading edge where a complex of proteins known as the WAVE regulatory complex (WRC) promotes the required assembly of actin filaments to push the front of the cell ahead. By using an U2OS osteosarcoma cell line with high metastatic potential, proven by a xenotransplant in zebrafish larvae, we have studied the role of the plasma membrane Ca2+ channel ORAI1 in this process. We have found that epidermal growth factor (EGF) triggered an enrichment of ORAI1 at the leading edge, where colocalized with cortactin (CTTN) and other members of the WRC, such as CYFIP1 and ARP2/3. ORAI1-CTTN co-precipitation was sensitive to the inhibition of the small GTPase RAC1, an upstream activator of the WRC. RAC1 potentiated ORAI1 translocation to the leading edge, increasing the availability of surface ORAI1 and increasing the plasma membrane ruffling. The role of ORAI1 at the leading edge was studied in genetically engineered U2OS cells lacking ORAI1 expression that helped us to prove the key role of this Ca2+ channel on lamellipodia formation, lamellipodial persistence, and cell directness, which are required for tumor cell invasiveness in vivo.


Assuntos
Cortactina/genética , Proteína ORAI1/genética , Osteossarcoma/genética , Pseudópodes/genética , Proteínas rac1 de Ligação ao GTP/genética , Citoesqueleto de Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/genética , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Pseudópodes/metabolismo
20.
Soft Matter ; 16(13): 3257-3266, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163076

RESUMO

Clickable magnetic nanoparticles have attracted great attention as potential nanoplatforms for biomedical applications because of the high functionalization efficiency of their surfaces with biomolecules, which facilitates their bio-compatibilization. However, the design and synthesis of clickable NPs is still challenging because of the complexity of the chemistry on the magnetic NP surface, thus robust methods that improve the ligand synthesis and the transfer of magnetic NPs in physiological media being in high-demand. In this work, we developed a versatile and enhanced synthetic route to fabricate potentially clickable IONPs of interest in nanomedicine. Catechol anchor ligands with different stereo-electronic features were synthetized from a hetero bi-functional PEG spacer backbone. The resulting catechol ligands transferred in good yields and high stability to magnetic NPs by an improved energetic ligand exchange method that combines sonication and high temperature. The azido functionalized IONPs exhibited excellent characteristics as T2 MRI contrast agents with low cytotoxicity, making these clickable magnetic NPs promising precursors for nanomedicines.


Assuntos
Catecóis/química , Química Click , Compostos Férricos/química , Nanopartículas Metálicas/química , Catecóis/síntese química , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA