Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979367

RESUMO

Diffuse correlation spectroscopy (DCS) is an optical method that offers non-invasive assessment of blood flow in tissue through the analysis of intensity fluctuations in diffusely backscattered coherent light. The non-invasive nature of the technique has enabled several clinical applications for deep tissue blood flow measurements, including cerebral blood flow monitoring as well as tumor blood flow mapping. While a promising technique, in measurement configurations targeting deep tissue hemodynamics, the standard DCS implementations suffer from insufficient signal-to-noise ratio (SNR), depth sensitivity, and sampling rate, limiting their utility. In this work, we present an enhanced DCS method called pathlength-selective, interferometric DCS (PaLS-iDCS), which improves upon both the sensitivity of the measurement to deep tissue hemodynamics and the SNR of the measurement using pathlength-specific coherent gain. Through interferometric detection, PaLS-iDCS can provide time-of-flight (ToF) specific blood flow information without the use of expensive time-tagging electronics and low-jitter detectors. The new technique is compared to time-domain DCS (TD-DCS), another enhanced DCS method able to resolve photon ToF in tissue, through Monte Carlo simulation, phantom experiments, and human subject measurements. PaLS-iDCS consistently demonstrates improvements in SNR (>2x) for similar measurement conditions (same photon ToF), and the SNR improvements allow for measurements at extended photon ToFs, which have increased sensitivity to deep tissue hemodynamics (~50% increase). Further, like TD-DCS, PaLS-iDCS allows direct estimation of tissue optical properties from the sampled ToF distribution without the need for a separate spectroscopic measurement. This method offers a relatively straightforward way to allow DCS systems to make robust measurements of blood flow with greatly enhanced sensitivity to deep tissue hemodynamics, enabling further applications of this non-invasive technology.

2.
J Biomed Opt ; 29(6): 066001, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38737790

RESUMO

Significance: Achieving pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT) is a significant predictor of increased likelihood of survival in breast cancer patients. Early prediction of pCR is of high clinical value as it could allow personalized adjustment of treatment regimens in non-responding patients for improved outcomes. Aim: We aim to assess the association between hemoglobin-based functional imaging biomarkers derived from diffuse optical tomography (DOT) and the pathological outcome represented by pCR at different timepoints along the course of NACT. Approach: Twenty-two breast cancer patients undergoing NACT were enrolled in a multimodal DOT and X-ray digital breast tomosynthesis (DBT) imaging study in which their breasts were imaged at different compression levels. Logistic regressions were used to study the associations between DOT-derived imaging markers evaluated after the first and second cycles of chemotherapy, respectively, with pCR status determined after the conclusion of NACT at the time of surgery. Receiver operating characteristic curve analysis was also used to explore the predictive performance of selected DOT-derived markers. Results: Normalized tumor HbT under half compression was significantly lower in the pCR group compared to the non-pCR group after two chemotherapy cycles (p=0.042). In addition, the change in normalized tumor StO2 upon reducing compression from full to half mammographic force was identified as another potential indicator of pCR at an earlier time point, i.e., after the first chemo cycle (p=0.038). Exploratory predictive assessments showed that AUCs using DOT-derived functional imaging markers as predictors reach as high as 0.75 and 0.71, respectively, after the first and second chemo cycle, compared to AUCs of 0.50 and 0.53 using changes in tumor size measured on DBT and MRI. Conclusions: These findings suggest that breast DOT could be used to assist response assessment in women undergoing NACT, a critical but unmet clinical need, and potentially enable personalized adjustments of treatment regimens.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Tomografia Óptica , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Tomografia Óptica/métodos , Adulto , Hemodinâmica , Resultado do Tratamento , Mamografia/métodos , Mama/diagnóstico por imagem , Mama/patologia , Hemoglobinas/análise , Idoso , Biomarcadores Tumorais/análise , Curva ROC
3.
Nat Biomed Eng ; 7(12): 1649-1666, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845517

RESUMO

The surgical resection of solid tumours can be enhanced by fluorescence-guided imaging. However, variable tumour uptake and incomplete clearance of fluorescent dyes reduces the accuracy of distinguishing tumour from normal tissue via conventional fluorescence intensity-based imaging. Here we show that, after systemic injection of the near-infrared dye indocyanine green in patients with various types of solid tumour, the fluorescence lifetime (FLT) of tumour tissue is longer than the FLT of non-cancerous tissue. This tumour-specific shift in FLT can be used to distinguish tumours from normal tissue with an accuracy of over 97% across tumour types, and can be visualized at the cellular level using microscopy and in larger specimens through wide-field imaging. Unlike fluorescence intensity, which depends on imaging-system parameters, tissue depth and the amount of dye taken up by tumours, FLT is a photophysical property that is largely independent of these factors. FLT imaging with indocyanine green may improve the accuracy of cancer surgeries.


Assuntos
Verde de Indocianina , Neoplasias , Humanos , Fluorescência , Neoplasias/diagnóstico por imagem , Corantes Fluorescentes
4.
IEEE Trans Med Imaging ; 42(8): 2439-2450, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37028063

RESUMO

Near-infrared diffuse optical tomography (DOT) is a promising functional modality for breast cancer imaging; however, the clinical translation of DOT is hampered by technical limitations. Specifically, conventional finite element method (FEM)-based optical image reconstruction approaches are time-consuming and ineffective in recovering full lesion contrast. To address this, we developed a deep learning-based reconstruction model (FDU-Net) comprised of a Fully connected subnet, followed by a convolutional encoder-Decoder subnet, and a U-Net for fast, end-to-end 3D DOT image reconstruction. The FDU-Net was trained on digital phantoms that include randomly located singular spherical inclusions of various sizes and contrasts. Reconstruction performance was evaluated in 400 simulated cases with realistic noise profiles for the FDU-Net and conventional FEM approaches. Our results show that the overall quality of images reconstructed by FDU-Net is significantly improved compared to FEM-based methods and a previously proposed deep-learning network. Importantly, once trained, FDU-Net demonstrates substantially better capability to recover true inclusion contrast and location without using any inclusion information during reconstruction. The model was also generalizable to multi-focal and irregularly shaped inclusions unseen during training. Finally, FDU-Net, trained on simulated data, could successfully reconstruct a breast tumor from a real patient measurement. Overall, our deep learning-based approach demonstrates marked superiority over the conventional DOT image reconstruction methods while also offering over four orders of magnitude acceleration in computational time. Once adapted to the clinical breast imaging workflow, FDU-Net has the potential to provide real-time accurate lesion characterization by DOT to assist the clinical diagnosis and management of breast cancer.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Imagens de Fantasmas , Neoplasias da Mama/diagnóstico por imagem , Algoritmos
5.
Biomed Opt Express ; 13(10): 5295-5310, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36425617

RESUMO

Near-infrared diffuse optical tomography (DOT) has the potential to improve the accuracy of breast cancer diagnosis and aid in monitoring the response of breast tumors to chemotherapy by providing hemoglobin-based functional imaging. The use of structural lesion priors derived from clinical breast imaging methods, such as mammography, can improve recovery of tumor optical contrast; however, accurate lesion prior placement is essential to take full advantage of prior-guided DOT image reconstruction. Simultaneous optical and anatomical imaging may not always be possible or desired, which can make the accurate registration of the lesion prior challenging. In this paper, we present a three-step lesion prior scanning approach to facilitate improved accuracy in lesion localization based on the optical contrast quantified by the total hemoglobin concentration (HbT) for non-simultaneous multimodal DOT and digital breast tomosynthesis (DBT) imaging. In three challenging breast cancer patient cases, where no clear optical contrast was present initially, we have demonstrated consistent improvement in the recovered HbT lesion contrast by utilizing this method.

6.
J Magn Reson Imaging ; 56(1): 121-133, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34958166

RESUMO

BACKGROUND: Absolute quantification of metabolites in MR spectroscopic imaging (MRSI) requires a stable reference signal of known concentration. The Electronic REference To access In vivo Concentrations (ERETIC) has shown great promise but has not been applied in patients and 3D MRSI. ERETIC hardware has not been integrated with receive arrays due to technical challenges, such as coil combination and unwanted coupling between multiple ERETIC and receive channels, for which we developed mitigation strategies. PURPOSE: To develop absolute quantification for whole-brain MRSI in glioma patients. STUDY TYPE: Prospective. POPULATION: Five healthy volunteers and three patients with isocitrate dehydrogenase mutant glioma (27% female). Calibration and coil loading phantoms. FIELD STRENGTH/SEQUENCE: A 3 T; Adiabatic spin-echo spiral 3D MRSI with real-time motion correction, Fluid Attenuated Inversion Recovery (FLAIR), Gradient Recalled Echo (GRE), Multi-echo Magnetization Prepared Rapid Acquisition of Gradient Echo (MEMPRAGE). ASSESSMENT: Absolute quantification was performed for five brain metabolites (total N-acetyl-aspartate [NAA]/creatine/choline, glutamine + glutamate, myo-inositol) and the oncometabolite 2-hydroxyglutarate using a custom-built 4x-ERETIC/8x-receive array coil. Metabolite quantification was performed with both EREIC and internal water reference methods. ERETIC signal was transmitted via optical link and used to correct coil loading. Inductive and radiative coupling between ERETIC and receive channels were measured. STATISTICAL TESTS: ERETIC and internal water methods for metabolite quantification were compared using Bland-Altman (BA) analysis and the nonparametric Mann-Whitney test. P < 0.05 was considered statistically significant. RESULTS: ERETIC could be integrated in receive arrays and inductive coupling dominated (5-886 times) radiative coupling. Phantoms show proportional scaling of the ERETIC signal with coil loading. The BA analysis demonstrated very good agreement (3.3% ± 1.6%) in healthy volunteers, while there was a large difference (36.1% ± 3.8%) in glioma tumors between metabolite concentrations by ERETIC and internal water quantification. CONCLUSION: Our results indicate that ERETIC integrated with receive arrays and whole-brain MRSI is feasible for brain metabolites quantification. Further validation is required to probe that ERETIC provides more accurate metabolite concentration in glioma patients. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Encéfalo , Glioma , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Eletrônica , Feminino , Glioma/diagnóstico por imagem , Glioma/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Prospectivos , Água
7.
JTCVS Tech ; 7: 161-177, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34318236

RESUMO

OBJECTIVES: Real-time noninvasive monitoring of cerebral blood flow (CBF) during surgery is key to reducing mortality rates associated with adult cardiac surgeries requiring hypothermic circulatory arrest (HCA). We explored a method to monitor cerebral blood flow during different brain protection techniques using diffuse correlation spectroscopy (DCS), a noninvasive optical technique which, combined with frequency-domain near-infrared spectroscopy (FDNIRS), also provides a measure of oxygen metabolism. METHODS: We used DCS in combination with FDNIRS to simultaneously measure hemoglobin oxygen saturation (SO2), an index of cerebral blood flow (CBFi), and an index of cerebral metabolic rate of oxygen (CMRO2i) in 12 patients undergoing cardiac surgery with HCA. RESULTS: Our measurements revealed that a negligible amount of blood is delivered to the cerebral cortex during HCA with retrograde cerebral perfusion, indistinguishable from HCA-only cases (median CBFi drops of 93% and 95%, respectively) with consequent similar decreases in SO2 (mean decrease of 0.6 ± 0.1% and 0.9 ± 0.2% per minute, respectively); CBFi and SO2 are mostly maintained with antegrade cerebral perfusion; the relationship of CMRO2i to temperature is given by CMRO2i = 0.052e0.079T. CONCLUSIONS: FDNIRS-DCS is able to detect changes in CBFi, SO2, and CMRO2i with intervention and can become a valuable tool for optimizing cerebral protection during HCA.

8.
Biomed Opt Express ; 11(10): 5425-5441, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33149960

RESUMO

Studying tissue hemodynamics following breast compression has the potential to reveal new contrast mechanisms for evaluating breast cancer. However, how compression will be distributed and, consequently, how hemodynamics will be altered inside the compressed breast remain unclear. To explore the effect of compression, 12 healthy volunteers were studied by applying a step compression increase (4.5-53.4 N) using an optical imaging system capable of concurrently measuring pressure distribution and hemodynamic responses. Finite element analysis was used to predict the distribution of internal fluid pressure (IFP) in breast models. Comparisons between the measured pressure distribution and the reconstructed hemodynamic images for the healthy volunteers indicated significant (p < 0.05) negative correlations. The findings from a breast cancer patient showed that IFP distribution during compression strongly correlates with the observed differential hemodynamic images. We concluded that dynamic breast compression results in non-uniform internal pressure distribution throughout the breast that could potentially drive directed blood flow. The encouraging results obtained highlight the promise of developing dynamic optical imaging biomarkers for breast cancer by interpreting differential hemodynamic images of breast tissue during compression in the context of measured pressure distribution and predicted IFP.

9.
J Biomed Opt ; 24(2): 1-11, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30338678

RESUMO

Ideally, neoadjuvant chemotherapy (NAC) assessment should predict pathologic complete response (pCR), a surrogate clinical endpoint for 5-year survival, as early as possible during typical 3- to 6-month breast cancer treatments. We introduce and demonstrate an approach for predicting pCR within 10 days of initiating NAC. The method uses a bedside diffuse optical spectroscopic imaging (DOSI) technology and logistic regression modeling. Tumor and normal tissue physiological properties were measured longitudinally throughout the course of NAC in 33 patients enrolled in the American College of Radiology Imaging Network multicenter breast cancer DOSI trial (ACRIN-6691). An image analysis scheme, employing z-score normalization to healthy tissue, produced models with robust predictions. Notably, logistic regression based on z-score normalization using only tissue oxygen saturation (StO2) measured within 10 days of the initial therapy dose was found to be a significant predictor of pCR (AUC = 0.92; 95% CI: 0.82 to 1). This observation suggests that patients who show rapid convergence of tumor tissue StO2 to surrounding tissue StO2 are more likely to achieve pCR. This early predictor of pCR occurs prior to reductions in tumor size and could enable dynamic feedback for optimization of chemotherapy strategies in breast cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Quimioterapia Adjuvante/métodos , Terapia Neoadjuvante , Consumo de Oxigênio/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Biomarcadores/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Testes Imediatos , Curva ROC , Análise de Sobrevida
10.
Biomed Opt Express ; 9(3): 1130-1150, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29541508

RESUMO

Near-infrared diffuse optical tomography (NIR-DOT) is an emerging technology that offers hemoglobin based, functional imaging tumor biomarkers for breast cancer management. The most promising clinical translation opportunities are in the differential diagnosis of malignant vs. benign lesions, and in early response assessment and guidance for neoadjuvant chemotherapy. Accurate quantification of the tissue oxy- and deoxy-hemoglobin concentration across the field of view, as well as repeatability during longitudinal imaging in the context of therapy guidance, are essential for the successful translation of NIR-DOT to clinical practice. The ill-posed and ill-condition nature of the DOT inverse problem makes this technique particularly susceptible to model errors that may occur, for example, when the experimental conditions do not fully match the assumptions built into the image reconstruction process. To evaluate the susceptibility of DOT images to experimental errors that might be encountered in practice for a parallel-plate NIR-DOT system, we simulated 7 different types of errors, each with a range of magnitudes. We generated simulated data by using digital breast phantoms derived from five actual mammograms of healthy female volunteers, to which we added a 1-cm tumor. After applying each of the experimental error types and magnitudes to the simulated measurements, we reconstructed optical images with and without structural prior guidance and assessed the overall error in the total hemoglobin concentrations (HbT) and in the HbT contrast between the lesion and surrounding area vs. the best-case scenarios. It is found that slight in-plane probe misalignment and plate rotation did not result in large quantification errors. However, any out-of-plane probe tilting could result in significant deterioration in lesion contrast. Among the error types investigated in this work, optical images were the least likely to be impacted by breast shape inaccuracies but suffered the largest deterioration due to cross-talk between signal channels. However, errors in optical images could be effectively controlled when experimental parameters were properly estimated during data acquisition and accounted for in the image processing procedure. Finally, optical images recovered using structural priors were, in general, less susceptible to experimental errors; however, lesion contrasts were more sensitive to errors when tumor locations were used as a priori info. Findings in this simulation study can provide guidelines for system design and operation in optical breast imaging studies.

11.
J Biomed Opt ; 22(4): 40501, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28397959

RESUMO

Although the development of tumor-targeted fluorescent probes is a major area of investigation, it will be several years before these probes are realized for clinical use. Here, we report an approach that employs indocyanine-green (ICG), a clinically approved, nontargeted dye, in conjunction with fluorescence lifetime (FLT) detection to provide high accuracy for tumor-tissue identification in mouse models of subcutaneous human breast and brain tmors. The improved performance relies on the distinct FLTs of ICG within tumors versus tissue autofluorescence and is further aided by the well-known enhanced permeability and retention of ICG in tumors and the clearance of ICG from normal tissue several hours after intravenous injection. We demonstrate that FLT detection can provide more than 98% sensitivity and specificity, and a 10-fold reduction in error rates compared to intensity-based detection. Our studies suggest the significant potential of FLT-contrast for accurate tumor-tissue identification using ICG and other targeted probes under development, both for intraoperative imaging and for ex-vivo margin assessment of surgical specimens.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Verde de Indocianina/metabolismo , Imagem Óptica/métodos , Animais , Fluorescência , Corantes Fluorescentes/metabolismo , Humanos , Camundongos , Sensibilidade e Especificidade
12.
J Biomed Opt ; 22(4): 46008, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28447102

RESUMO

Diffuse optical tomography (DOT) is emerging as a noninvasive functional imaging method for breast cancer diagnosis and neoadjuvant chemotherapy monitoring. In particular, the multimodal approach of combining DOT with x-ray digital breast tomosynthesis (DBT) is especially synergistic as DBT prior information can be used to enhance the DOT reconstruction. DOT, in turn, provides a functional information overlay onto the mammographic images, increasing sensitivity and specificity to cancer pathology. We describe a dynamic DOT apparatus designed for tight integration with commercial DBT scanners and providing a fast (up to 1 Hz) image acquisition rate to enable tracking hemodynamic changes induced by the mammographic breast compression. The system integrates 96 continuous-wave and 24 frequency-domain source locations as well as 32 continuous wave and 20 frequency-domain detection locations into low-profile plastic plates that can easily mate to the DBT compression paddle and x-ray detector cover, respectively. We demonstrate system performance using static and dynamic tissue-like phantoms as well as in vivo images acquired from the pool of patients recalled for breast biopsies at the Massachusetts General Hospital Breast Imaging Division.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Imagem Multimodal/métodos , Mama/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Distribuição Normal , Óptica e Fotônica , Imagens de Fantasmas , Ondas de Rádio , Tomografia Óptica
13.
Biomed Opt Express ; 8(2): 555-569, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270967

RESUMO

We characterize novel breast cancer imaging biomarkers for monitoring neoadjuvant chemotherapy (NACT) and predicting outcome. Specifically, we recruited 30 patients for a pilot study in which NACT patients were imaged using dynamic tomographic optical breast imaging (DTOBI) to quantify the hemodynamic changes due to partial mammographic compression. DTOBI scans were obtained pre-treatment (referred to as day 0), as well as 7 and 30 days into therapy on female patients undergoing NACT. We present data for the 13 patients who participated in both day 0 and 7 measurements and had evaluable data, of which 7 also returned for day 30 measurements. We acquired optical images over 2 minutes following 4-8 lbs (18-36 N) of compression. The timecourses of tissue-volume averaged total hemoglobin (HbT), as well as hemoglobin oxygen saturation (SO2) in the tumor vs. surrounding tissues were compared. Outcome prediction metrics based on the differential behavior in tumor vs. normal areas for responders (>50% reduction in maximum diameter) vs. non-responders were analyzed for statistical significance. At baseline, all patients exhibit an initial decrease followed by delayed recovery in HbT, and SO2 in the tumor area, in contrast to almost immediate recovery in surrounding tissue. At day 7 and 30, this contrast is maintained in non-responders; however, in responders, the contrast in hemodynamic time-courses between tumor and normal tissue starts decreasing at day 7 and substantially disappears at day 30. At day 30 into NACT, responding tumors demonstrate "normalization" of compression induced hemodynamics vs. surrounding normal tissue whereas non-responding tumors did not. This data suggests that DTOBI imaging biomarkers, which are governed by the interplay between tissue biomechanics and oxygen metabolism, may be suitable for guiding NACT by offering early predictions of treatment outcome.

14.
J Biomed Opt ; 22(12): 121604, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389104

RESUMO

We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received multiple DOSI scans prior to and during 3- to 6-month NAC. The impact of three sources of error on accuracy and precision, including different operators, instruments, and calibration standards, was evaluated using a broadband reflectance standard and two different solid tissue-simulating optical phantoms. Instruments showed <0.0010 mm−1 (10.3%) and 0.06 mm−1 (4.7%) deviation in broadband absorption and reduced scattering, respectively, over the 2-year duration of ACRIN-6691. These variations establish a useful performance criterion for assessing instrument stability. The proposed procedures and tests are not limited to DOSI; rather, they are intended to provide methods to characterize performance of any instrument used in translational optical imaging.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Neoplasias da Mama/tratamento farmacológico , Quimioterapia Adjuvante , Ensaios Clínicos como Assunto , Monitoramento de Medicamentos/instrumentação , Monitoramento de Medicamentos/métodos , Desenho de Equipamento , Feminino , Humanos , Imagem Óptica/instrumentação , Imagens de Fantasmas , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação
15.
Cancer Res ; 76(20): 5933-5944, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27527559

RESUMO

The prospective multicenter ACRIN 6691 trial was designed to evaluate whether changes from baseline to mid-therapy in a diffuse optical spectroscopic imaging (DOSI)-derived imaging endpoint, the tissue optical index (TOI), predict pathologic complete response (pCR) in women undergoing breast cancer neoadjuvant chemotherapy (NAC). DOSI instruments were constructed at the University of California, Irvine (Irvine, CA), and delivered to six institutions where 60 subjects with newly diagnosed breast tumors (at least 2 cm in the longest dimension) were enrolled over a 2-year period. Bedside DOSI images of the tissue concentrations of deoxy-hemoglobin (ctHHb), oxy-hemoglobin (ctHbO2), water (ctH2O), lipid, and TOI (ctHHb × ctH2O/lipid) were acquired on both breasts up to four times during NAC treatment: baseline, 1-week, mid-point, and completion. Of the 34 subjects (mean age 48.4 ± 10.7 years) with complete, evaluable data from both normal and tumor-containing breast, 10 (29%) achieved pCR as determined by central pathology review. The percent change in tumor-to-normal TOI ratio (%TOITN) from baseline to mid-therapy ranged from -82% to 321%, with a median of -36%. Using pCR as the reference standard and ROC curve methodology, %TOITN AUC was 0.60 (95% CI, 0.39-0.81). In the cohort of 17 patients with baseline tumor oxygen saturation (%StO2) greater than the 77% population median, %TOITN AUC improved to 0.83 (95% CI, 0.63-1.00). We conclude that the combination of baseline functional properties and dynamic optical response shows promise for clinical outcome prediction. Cancer Res; 76(20); 5933-44. ©2016 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Idoso , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Quimioterapia Adjuvante , Feminino , Hemoglobinas/metabolismo , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Estudos Prospectivos , Curva ROC
16.
Biomed Opt Express ; 4(12): 2911-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24409390

RESUMO

Near infrared dynamic diffuse optical tomography measurements of breast hemodynamics during fractional mammographic compression offer a novel contrast mechanism for detecting breast cancer and monitoring chemotherapy. Tissue viscoelastic relaxation during the compression period leads to a slow reduction in the compression force and reveals biomechanical and metabolic differences between healthy and lesion tissue. We measured both the absolute values and the temporal evolution of hemoglobin concentration during 25-35 N of compression for 22 stage II and III breast cancer patients scheduled to undergo neoadjuvant chemotherapy. 17 patients were included in the group analysis (average tumor size 3.2 cm, range: 1.3-5.7 cm). We observed a statistically significant differential decrease in total and oxy-hemoglobin, as well as in hemoglobin oxygen saturation in tumor areas vs. healthy tissue, as early as 30 seconds into the compression period. The hemodynamic contrast is likely driven by the higher tumor stiffness and different viscoelastic relaxation rate, as well as the higher tumor oxygen metabolism rate.

17.
Radiology ; 258(1): 89-97, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21062924

RESUMO

PURPOSE: To explore the optical and physiologic properties of normal and lesion-bearing breasts by using a combined optical and digital breast tomosynthesis (DBT) imaging system. MATERIALS AND METHODS: Institutional review board approval and patient informed consent were obtained for this HIPAA-compliant study. Combined optical and tomosynthesis imaging analysis was performed in 189 breasts from 125 subjects (mean age, 56 years ± 13 [standard deviation]), including 138 breasts with negative findings and 51 breasts with lesions. Three-dimensional (3D) maps of total hemoglobin concentration (Hb(T)), oxygen saturation (So(2)), and tissue reduced scattering coefficients were interpreted by using the coregistered DBT images. Paired and unpaired t tests were performed between various tissue types to identify significant differences. RESULTS: The estimated average bulk Hb(T) from 138 normal breasts was 19.2 µmol/L. The corresponding mean So(2) was 0.73, within the range of values in the literature. A linear correlation (R = 0.57, P < .0001) was found between Hb(T) and the fibroglandular volume fraction derived from the 3D DBT scans. Optical reconstructions of normal breasts revealed structures corresponding to chest-wall muscle, fibroglandular, and adipose tissues in the Hb(T), So(2), and scattering images. In 26 malignant tumors of 0.6-2.5 cm in size, Hb(T) was significantly greater than that in the fibroglandular tissue of the same breast (P = .0062). Solid benign lesions (n = 17) and cysts (n = 8) had significantly lower Hb(T) contrast than did the malignant lesions (P = .025 and P = .0033, respectively). CONCLUSION: The optical and DBT images were structurally consistent. The malignant tumors and benign lesions demonstrated different Hb(T) and scattering contrasts, which can potentially be exploited to reduce the false-positive rate of conventional mammography and unnecessary biopsies.


Assuntos
Neoplasias da Mama/patologia , Interpretação de Imagem Assistida por Computador/métodos , Mamografia/métodos , Tomografia Óptica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico por imagem , Reações Falso-Positivas , Feminino , Humanos , Imageamento Tridimensional , Pessoa de Meia-Idade , Oxigênio/metabolismo , Intensificação de Imagem Radiográfica/métodos
18.
IEEE Trans Med Imaging ; 28(1): 30-42, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19116186

RESUMO

In this paper, we report new progress in developing the instrument and software platform of a combined X-ray mammography/diffuse optical breast imaging system. Particularly, we focus on system validation using a series of balloon phantom experiments and the optical image analysis of 49 healthy patients. Using the finite-element method for forward modeling and a regularized Gauss-Newton method for parameter reconstruction, we recovered the inclusions inside the phantom and the hemoglobin images of the human breasts. An enhanced coupling coefficient estimation scheme was also incorporated to improve the accuracy and robustness of the reconstructions. The recovered average total hemoglobin concentration (HbT) and oxygen saturation (SO2) from 68 breast measurements are 16.2 microm and 71%, respectively, where the HbT presents a linear trend with breast density. The low HbT value compared to literature is likely due to the associated mammographic compression. From the spatially co-registered optical/X-ray images, we can identify the chest-wall muscle, fatty tissue, and fibroglandular regions with an average HbT of 20.1+/-6.1 microm for fibroglandular tissue, 15.4+/-5.0 microm for adipose, and 22.2+/-7.3 microm for muscle tissue. The differences between fibroglandular tissue and the corresponding adipose tissue are significant (p < 0.0001). At the same time, we recognize that the optical images are influenced, to a certain extent, by mammographical compression. The optical images from a subset of patients show composite features from both tissue structure and pressure distribution. We present mechanical simulations which further confirm this hypothesis.


Assuntos
Mama/anatomia & histologia , Mamografia/métodos , Técnica de Subtração , Tomografia Óptica/métodos , Mama/química , Desenho de Equipamento , Feminino , Análise de Elementos Finitos , Hemoglobinas/análise , Humanos , Mamografia/instrumentação , Oxigênio/sangue , Imagens de Fantasmas , Pressão/efeitos adversos , Intensificação de Imagem Radiográfica/instrumentação , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Óptica/instrumentação
19.
Phys Med Biol ; 52(12): 3619-41, 2007 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-17664563

RESUMO

We develop algorithms for imaging the time-varying optical absorption within the breast given diffuse optical tomographic data collected over a time span that is long compared to the dynamics of the medium. Multispectral measurements allow for the determination of the time-varying total hemoglobin concentration and of oxygen saturation. To facilitate the image reconstruction, we decompose the hemodynamics in time into a linear combination of spatio-temporal basis functions, the coefficients of which are estimated using all of the data simultaneously, making use of a Newton-based nonlinear optimization algorithm. The solution of the extremely large least-squares problem which arises in computing the Newton update is obtained iteratively using the LSQR algorithm. A Laplacian spatial regularization operator is applied, and, in addition, we make use of temporal regularization which tends to encourage similarity between the images of the spatio-temporal coefficients. Results are shown for an extensive simulation, in which we are able to image and quantify localized changes in both total hemoglobin concentration and oxygen saturation. Finally, a breast compression study has been performed for a normal breast cancer screening subject, using an instrument which allows for highly accurate co-registration of multispectral diffuse optical measurements with an x-ray tomosynthesis image of the breast. We are able to quantify the global return of blood to the breast following compression, and, in addition, localized changes are observed which correspond to the glandular region of the breast.


Assuntos
Algoritmos , Mama/fisiologia , Simulação por Computador , Hemoglobinas/análise , Oxigênio/análise , Tomografia Óptica/métodos , Feminino , Humanos , Mamografia/métodos , Tomografia Óptica/instrumentação
20.
J Biomed Opt ; 11(6): 064016, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17212539

RESUMO

We use optical spectroscopy to characterize the influence of mammographic-like compression on the physiology of the breast. We note a reduction in total hemoglobin content, tissue oxygen saturation, and optical scattering under compression. We also note a hyperemic effect during repeated compression cycles. By modeling the time course of the tissue oxygen saturation, we are able to obtain estimates for the volumetric blood flow (1.64+/-0.6 mL/100 mL/min) and the oxygen consumption (1.97+/-0.6 micromol/100 mL/min) of compressed breast tissue. These values are comparable to estimates obtained from previously published positron emission tomography (PET) measurements. We conclude that compression-induced changes in breast physiological properties are significant and should be accounted for when performing optical breast imaging. Additionally, the dynamic characteristics of the changes in breast physiological parameters, together with the ability to probe the tissue metabolic state, may prove useful for breast cancer detection.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Mama/irrigação sanguínea , Mama/fisiologia , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Estimulação Física/métodos , Suporte de Carga , Adaptação Fisiológica , Adulto , Força Compressiva , Feminino , Humanos , Pessoa de Meia-Idade , Fótons , Espalhamento de Radiação , Espectrofotometria Infravermelho , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA