Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(9): 2061-2076.e11, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39013466

RESUMO

Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of the Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we used pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affected cell entry and antibody neutralization. Our experiments defined functional constraints throughout GPC. We quantified how GPC mutations affected neutralization with a panel of monoclonal antibodies. All antibodies tested were escaped by mutations that existed among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid the design of therapeutics and vaccines.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Febre Lassa , Vírus Lassa , Mutação , Vírus Lassa/imunologia , Vírus Lassa/genética , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Animais , Anticorpos Monoclonais/imunologia , Febre Lassa/imunologia , Febre Lassa/virologia , Internalização do Vírus , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Glicoproteínas/imunologia , Glicoproteínas/genética , Evasão da Resposta Imune/imunologia , Evasão da Resposta Imune/genética , Células HEK293
2.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468692

RESUMO

The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. Since mycobacteria are resource and energy limited under these conditions, it is likely that remodeling has distinct requirements from those of the well-characterized biosynthetic program that operates during unrestricted growth. Unexpectedly, we found that mycomembrane remodeling in nutrient-starved, nonreplicating mycobacteria includes synthesis in addition to turnover. Mycomembrane synthesis under these conditions occurs along the cell periphery, in contrast to the polar assembly of actively growing cells, and both liberates and relies on the nonmammalian disaccharide trehalose. In the absence of trehalose recycling, de novo trehalose synthesis fuels mycomembrane remodeling. However, mycobacteria experience ATP depletion, enhanced respiration, and redox stress, hallmarks of futile cycling and the collateral dysfunction elicited by some bactericidal antibiotics. Inefficient energy metabolism compromises the survival of trehalose recycling mutants in macrophages. Our data suggest that trehalose recycling alleviates the energetic burden of mycomembrane remodeling under stress. Cell envelope recycling pathways are emerging targets for sensitizing resource-limited bacterial pathogens to host and antibiotic pressure.IMPORTANCE The glucose-based disaccharide trehalose is a stress protectant and carbon source in many nonmammalian cells. Mycobacteria are relatively unique in that they use trehalose for an additional, extracytoplasmic purpose: to build their outer "myco" membrane. In these organisms, trehalose connects mycomembrane biosynthesis and turnover to central carbon metabolism. Key to this connection is the retrograde transporter LpqY-SugABC. Unexpectedly, we found that nongrowing mycobacteria synthesize mycomembrane under carbon limitation but do not require LpqY-SugABC. In the absence of trehalose recycling, compensatory anabolism allows mycomembrane biosynthesis to continue. However, this workaround comes at a cost, namely, ATP consumption, increased respiration, and oxidative stress. Strikingly, these phenotypes resemble those elicited by futile cycles and some bactericidal antibiotics. We demonstrate that inefficient energy metabolism attenuates trehalose recycling mutant Mycobacterium tuberculosis in macrophages. Energy-expensive macromolecule biosynthesis triggered in the absence of recycling may be a new paradigm for boosting host activity against bacterial pathogens.


Assuntos
Membrana Celular/metabolismo , Parede Celular/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Trealose/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Fatores Corda/metabolismo , Fatores Corda/farmacologia , Diarilquinolinas/farmacologia , Metabolismo Energético/genética , Galactanos/metabolismo , Galactanos/farmacologia , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Maltose/metabolismo , Maltose/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Ácidos Micólicos/metabolismo , Ácidos Micólicos/farmacologia , Rifampina/farmacologia , Trealose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA