RESUMO
Circulating metabolites resulting from colonic metabolism of dietary (poly)phenols are highly abundant in the bloodstream, though still marginally explored, particularly concerning their brain accessibility. Our goal is to disclose (poly)phenol metabolites' blood-brain barrier (BBB) transport, in vivo and in vitro, as well as their role at BBB level. For three selected metabolites, benzene-1,2-diol-3-sulfate/benzene-1,3-diol-2-sulfate (pyrogallol-sulfate - Pyr-sulf), benzene-1,3-diol-6-sulfate (phloroglucinol-sulfate - Phlo-sulf), and phenol-3-sulfate (resorcinol-sulfate - Res-sulf), BBB transport was assessed in human brain microvascular endothelial cells (HBMEC). Their potential in modulating in vitro BBB properties at circulating concentrations was also studied. Metabolites' fate towards the brain, liver, kidney, urine, and blood was disclosed in Wistar rats upon injection. Transport kinetics in HBMEC highlighted different BBB permeability rates, where Pyr-sulf emerged as the most in vitro BBB permeable metabolite. Pyr-sulf was also the most potent regarding BBB properties improvement, namely increased beta(ß)-catenin membrane expression and reduction of zonula occludens-1 membrane gaps. Whereas no differences were observed for transferrin, increased expression of caveolin-1 upon Pyr-sulf and Res-sulf treatments was found. Pyr-sulf was also capable of modulating gene and protein expression of some solute carrier transporters. Notably, each of the injected metabolites exhibited a unique tissue distribution in vivo, with the remarkable ability to almost immediately reach the brain.
Assuntos
Barreira Hematoencefálica , Encéfalo , Células Endoteliais , Ratos Wistar , Barreira Hematoencefálica/metabolismo , Animais , Humanos , Ratos , Encéfalo/metabolismo , Masculino , Células Endoteliais/metabolismo , Transporte Biológico , Polifenóis/metabolismo , Peso MolecularRESUMO
Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.
Assuntos
Lesões Encefálicas Traumáticas , Neoplasias Encefálicas , Animais , Fenóis/uso terapêutico , Encéfalo/patologia , Modelos Animais , Neoplasias Encefálicas/patologiaRESUMO
A large number of epidemiological studies have shown that consumption of fruits, vegetables, and beverages rich in (poly)phenols promote numerous health benefits from cardiovascular to neurological diseases. Evidence on (poly)phenols has been applied mainly to flavonoids, yet the role of phenolic acids has been largely overlooked. Such phenolics present in food combine with those resulting from gut microbiota catabolism of flavonoids and chlorogenic acids and those produced by endogenous pathways, resulting in large concentrations of low molecular weight phenolic metabolites in human circulation. Independently of the origin, in human intervention studies using diets rich in (poly)phenols, a total of 137 low molecular weight phenolic metabolites have been detected and quantified in human circulation with largely unknown biological function. In this review, we will pinpoint two main aspects of the low molecular weight phenolic metabolites: (i) the microbiota responsible for their generation, and (ii) the analysis (quali- and quantitative) in human circulation and their respective pharmacokinetics. In doing so, we aim to drive scientific advances regarding the ubiquitous roles of low molecular weight phenolic metabolites using physiologically relevant concentrations and under (patho)physiologically relevant conditions in humans.
Assuntos
Dieta , Fenóis , Flavonoides/metabolismo , Frutas , Humanos , Peso MolecularRESUMO
Kidney diseases constitute a worldwide public health problem, contributing to morbidity and mortality. The present study aimed to provide an overview of the published data regarding the potential beneficial effects of polyphenols on major kidney diseases, namely acute kidney injury, chronic kidney disease, diabetic nephropathy, renal cancer, and drug-induced nephrotoxicity. This study consists of a bibliographical review including in vitro and in vivo studies dealing with the effects of individual compounds. An analysis of the polyphenol metabolome in human urine was also conducted to estimate those compounds that are most likely to be responsible for the kidney protective effects of polyphenols. The biological effects of polyphenols can be highly attributed to the modulation of specific signaling cascades including those involved in oxidative stress responses, anti-inflammation processes, and apoptosis. There is increasing evidence that polyphenols afford great potential in renal disease protection. However, this evidence (especially when in vitro studies are involved) should be considered with caution before its clinical translation, particularly due to the unfavorable pharmacokinetics and extensive metabolization that polyphenols undergo in the human body. Future research should consider polyphenols and their metabolites that indeed reach kidney tissues.
RESUMO
The rise of neurodegenerative diseases in an aging population is an increasing problem of health, social and economic consequences. Epidemiological and intervention studies have demonstrated that diets rich in (poly)phenols can have potent health benefits on cognitive decline and neurodegenerative diseases. Meanwhile, the role of gut microbiota is ever more evident in modulating the catabolism of (poly)phenols to dozens of low molecular weight (poly)phenol metabolites that have been identified in plasma and urine. These metabolites can reach circulation in higher concentrations than parent (poly)phenols and persist for longer periods of time. However, studies addressing their potential brain effects are still lacking. In this review, we will discuss different model organisms that have been used to study how low molecular weight (poly)phenol metabolites affect neuronal related mechanisms gathering critical insight on their potential to tackle the major hallmarks of neurodegeneration.
Assuntos
Dieta/métodos , Microbioma Gastrointestinal , Doenças Neurodegenerativas/sangue , Polifenóis/sangue , Idoso , HumanosRESUMO
The world of (poly)phenols arising from dietary sources has been significantly amplified with the discovery of low molecular weight (LMW) (poly)phenol metabolites resulting from phase I and phase II metabolism and microbiota transformations. These metabolites, which are known to reach human circulation have been studied to further explore their interesting properties, especially regarding neuroprotection. Nevertheless, once in circulation, their distribution to target tissues, such as the brain, relies on their ability to cross the blood-brain barrier (BBB), one of the most controlled barriers present in humans. This represents a key step of an underexplored journey towards the brain. Present review highlights the main findings related to the ability of LMW (poly)phenol metabolites to reach the brain, considering different studies: in silico, in vitro, and in vivo. The mechanisms associated with the transport of these LMW (poly)phenol metabolites across the BBB and possible transporters will be discussed. Overall, the transport of these LMW (poly)phenol metabolites is crucial to elucidate which compounds may exert direct neuroprotective effects, so it is imperative to continue dissecting their potential to cross the BBB and the mechanisms behind their permeation.
RESUMO
Age-associated pathophysiological changes such as neurodegenerative diseases are multifactorial conditions with increasing incidence and no existing cure. The possibility of altering the progression and development of these multifactorial diseases through diet is an attractive approach with increasing supporting data. Epidemiological and clinical studies have highlighted the health potential of diets rich in fruits and vegetables. Such food sources are rich in (poly)phenols, natural compounds increasingly associated with health benefits, having the potential to prevent or retard the development of various diseases. However, absorption and the blood concentration of (poly)phenols is very low when compared with their corresponding (poly)phenolic metabolites. Therefore, these serum-bioavailable metabolites are much more promising candidates to overcome cellular barriers and reach target tissues, such as the brain. Bearing this in mind, it will be reviewed that the molecular mechanisms underlying (poly)phenolic metabolites effects, range from 0.1 to <50 µM and their role on neuroinflammation, a central hallmark in neurodegenerative diseases.
Assuntos
Doenças Neurodegenerativas/dietoterapia , Doenças Neurodegenerativas/imunologia , Extratos Vegetais/metabolismo , Polifenóis/metabolismo , Animais , Frutas/química , Frutas/metabolismo , Humanos , Peso Molecular , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Extratos Vegetais/química , Polifenóis/química , Verduras/química , Verduras/metabolismoRESUMO
Diets rich in (poly)phenols are associated with a reduced reduction in the incidence of cardiovascular disorders. While the absorption and metabolism of (poly)phenols has been described, it is not clear how their metabolic fate is affected under pathological conditions. This study evaluated the metabolic fate of berry (poly)phenols in an in vivo model of hypertension as well as the associated microbiota response. Dahl salt-sensitive rats were fed either a low-salt diet (0.26% NaCl) or a high-salt diet (8% NaCl), with or without a berry mixture (blueberries, blackberries, raspberries, Portuguese crowberry and strawberry tree fruit) for 9 weeks. The salt-enriched diet promoted an increase in the urinary excretion of berry (poly)phenol metabolites, while the abundance of these metabolites decreased in faeces, as revealed by UPLC-MS/MS. Moreover, salt and berries modulated gut microbiota composition as demonstrated by 16S rRNA analysis. Some changes in the microbiota composition were associated with the high-salt diet and revealed an expansion of the families Proteobacteria and Erysipelotrichaceae. However, this effect was mitigated by the dietary supplementation with berries. Alterations in the metabolic fate of (poly)phenols occur in parallel with the modulation of gut microbiota in hypertensive rats. Thus, beneficial effects of (poly)phenols could be related with these interlinked modifications, between metabolites and microbiota environments.
Assuntos
Frutas , Microbioma Gastrointestinal/fisiologia , Fenóis/metabolismo , Animais , Dieta , Disbiose/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Glicosídeos/metabolismo , Masculino , Fenóis/análise , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/metabolismo , Ratos , Ratos Endogâmicos Dahl , Sódio na DietaRESUMO
Phenolic compounds have been recognized as promising compounds for the prevention of chronic diseases, including neurodegenerative ones. However, phenolics like flavan-3-ols (F3O) are poorly absorbed along the gastrointestinal tract and structurally rearranged by gut microbiota, yielding smaller and more polar metabolites like phenyl-γ-valerolactones, phenylvaleric acids and their conjugates. The present work investigated the ability of F3O-derived metabolites to cross the blood-brain barrier (BBB), by linking five experimental models with increasing realism. First, an in silico study examined the physical-chemical characteristics of F3O metabolites to predict those most likely to cross the BBB. Some of these metabolites were then tested at physiological concentrations to cross the luminal and abluminal membranes of brain microvascular endothelial cells, cultured in vitro. Finally, three different in vivo studies in rats injected with pure 5-(3',4'-dihydroxyphenyl)-γ-valerolactone, and rats and pigs fed grapes or a F3O-rich cocoa extract, respectively, confirmed the presence of 5-(hydroxyphenyl)-γ-valerolactone-sulfate (3',4' isomer) in the brain. This work highlighted, with different experimental models, the BBB permeability of one of the main F3O-derived metabolites. It may support the neuroprotective effects of phenolic-rich foods in the frame of the "gut-brain axis".