Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000076

RESUMO

The gut microbiota is a diverse bacterial community consisting of approximately 2000 species, predominantly from five phyla: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia. The microbiota's bacterial species create distinct compounds that impact the host's health, including well-known short-chain fatty acids. These are produced through the breakdown of dietary fibers and fermentation of undigested carbohydrates by the intestinal microbiota. The main short-chain fatty acids consist of acetate, propionate, and butyrate. The concentration of butyrate in mammalian intestines varies depending on the diet. Its main functions are use as an energy source, cell differentiation, reduction in the inflammatory process in the intestine, and defense against oxidative stress. It also plays an epigenetic role in histone deacetylases, thus helping to reduce the risk of colon cancer. Finally, butyrate affects the gut-brain axis by crossing the brain-blood barrier, making it crucial to determine the right concentrations for both local and peripheral effects. In recent years, there has been a significant amount of attention given to the role of dietary polyphenols and fibers in promoting human health. Polyphenols and dietary fibers both play crucial roles in protecting human health and can produce butyrate through gut microbiota fermentation. This paper aims to summarize information on the key summits related to the negative correlation between intestinal microbiota diversity and chronic diseases to guide future research on determining the specific activity of butyrate from polyphenols and dietary fibers that can carry out these vital functions.


Assuntos
Butiratos , Fibras na Dieta , Microbioma Gastrointestinal , Polifenóis , Microbioma Gastrointestinal/efeitos dos fármacos , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Humanos , Polifenóis/farmacologia , Butiratos/metabolismo , Animais , Ácidos Graxos Voláteis/metabolismo , Fermentação
2.
Animals (Basel) ; 14(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38539949

RESUMO

Nowadays, old-generation pesticides are released into ecosystems alongside new formulations, giving rise to pharmacological interactions (additive, synergistic, and antagonistic effects). The aim of this study was to evaluate the impact that simultaneous exposure to DMT and FLU doses has on bee health. Groups of twenty honeybees were housed in cages to compose six macro-groups. One group consisted of experimental replicates treated orally with a toxic dose of deltamenthrin (DMT 21.6 mg/L); two other groups were subjected to the oral administration of two toxic doses of flupyradifurone (FLU 50 mg/L and FLU 100 mg/L); and two other groups were intoxicated with a combination of the two pesticides (DMT 21.6 + FLU 50 and DMT 21.6 + FLU 100). The consequences of the pesticides' interactions were highlighted by measuring and comparing data on survival, food consumption, and abnormal behavior. Generally speaking, antagonism between the two pesticides has been demonstrated. The bees were able to survive for up to three days at the lowest dosage of FLU (50 mg/L), with 46% of the subjects still alive; however, the maximum dose (100 mg/L) caused all treated animals to die as early as the second day. When DMT and FLU 50 were administered together, the group that received DMT alone had a lower survival rate. When comparing the survival rates produced by the DMT and FLU 50 combination to those of the group receiving FLU 50 alone, the same was clearly visible. While there was no statistically significant improvement observed when the survival indices of the DMT and FLU 100 combination were compared to those of the group intoxicated with DMT alone, an improvement in survival indices was observed when these were compared with the group intoxicated with FLU 100 alone.

3.
Animals (Basel) ; 14(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396576

RESUMO

Flupyradifurone (FLU) is a butenolide insecticide that has come onto the market relatively recently. It is used in agriculture to control aphids, psyllids, and whiteflies. Toxicity studies have decreed its low toxicity to honeybees. However, recent research has challenged these claims; oral exposure to the pesticide can lead to behavioral abnormalities and in the worst cases, lethal phenomena. Compounds with antioxidant activity, such as flavonoids and polyphenols, have been shown to protect against the toxic effects of pesticides. The aim of this research was to evaluate the possible protective effect of the bergamot polyphenolic fraction (BPF) against behavioral abnormalities and lethality induced by toxic doses of FLU orally administered to honeybees under laboratory conditions. Honeybees were assigned to experimental groups in which two toxic doses of FLU, 50 mg/L and 100 mg/L were administered. In other replicates, three doses (1, 2 and 5 mg/kg) of the bergamot polyphenolic fraction (BPF) were added to the above toxic doses. In the experimental groups intoxicated with FLU at the highest dose tested, all caged subjects (20 individuals) died within the second day of administration. The survival probability of the groups to which the BPF was added was compared to that of the groups to which only the toxic doses of FLU were administered. The mortality rate in the BPF groups was statistically lower (p < 0.05) than in the intoxicated groups; in addition, a lower percentage of individuals exhibited behavioral abnormalities. According to this research, the ingestion of the BPF attenuates the harmful effects of FLU. Further studies are needed before proposing BPF incorporation into the honeybees' diet, but there already seem to be beneficial effects associated with its intake.

4.
Biomed Pharmacother ; 171: 116082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242036

RESUMO

To date, the complex pathological interactions between renal and cardiovascular systems represent a real global epidemic in both developed and developing countries. In this context, renovascular hypertension (RVH) remains among the most prevalent, but also potentially reversible, risk factor for numerous reno-cardiac diseases in humans and pets. Here, we investigated the anti-inflammatory and reno-cardiac protective effects of a polyphenol-rich fraction of bergamot (BPF) in an experimental model of hypertension induced by unilateral renal artery ligation. Adult male Wistar rats underwent unilateral renal artery ligation and treatment with deoxycorticosterone acetate (DOCA) (20 mg/kg, s.c.), twice a week for a period of 4 weeks, and 1% sodium chloride (NaCl) water (n = 10). A subgroup of hypertensive rats received BPF (100 mg/kg/day for 28 consecutive days, n = 10) by gavage. Another group of animals was treated with a sub-cutaneous injection of vehicle (that served as control, n = 8). Unilateral renal artery ligation followed by treatment with DOCA and 1% NaCl water resulted in a significant increase in mean arterial blood pressure (MAP; p< 0.05. vs CTRL) which strongly increased the resistive index (RI; p<0.05 vs CTRL) of contralateral renal artery flow and kidney volume after 4 weeks (p<0.001 vs CTRL). Renal dysfunction also led to a dysfunction of cardiac tissue strain associated with overt dyssynchrony in cardiac wall motion when compared to CTRL group, as shown by the increased time-to-peak (T2P; p<0.05) and the decreased whole peak capacity (Pk; p<0.01) in displacement and strain rate (p<0.05, respectively) in longitudinal motion. Consequently, the hearts of RAL DOCA-Salt rats showed a larger time delay between the fastest and the lowest region (Maximum Opposite Wall Delay-MOWD) when compared to CTRL group (p<0.05 in displacement and p <0.01 in strain rate). Furthermore, a significant increase in the levels of the circulating pro-inflammatory cytokines and chemokines (p< 0.05 for IL-12(40), p< 0.01 for GM-CSF, KC, IL-13, and TNF- α) and in the NGAL expression of the ligated kidney (p< 0.001) was observed compared to CTRL group. Interestingly, this pathological condition is prevented by BPF treatment. In particular, BPF treatment prevents the increase of blood pressure in RAL DOCA-Salt rats (p< 0.05) and exerts a protective effect on the volume of the contralateral kidney (p <0.01). Moreover, BPF ameliorates cardiac tissue strain dysfunction by increasing Pk in displacement (p <0.01) and reducing the T2P in strain rate motion (p<0.05). These latter effects significantly improve MOWD (p <0.05) preventing the overt dyssynchrony in cardiac wall motion. Finally, the reno-cardiac protective effect of BPF was associated with a significant reduction in serum level of some pro-inflammatory cytokines and chemokines (p<0.05 for KC and IL-12(40), p<0.01 for GM-CSF, IL-13, and TNF- α) restoring physiological levels of renal neutrophil gelatinase-associated lipocalin (NGAL, p<0.05) protein of the tethered kidney. In conclusion, the present results show, for the first time, that BPF promotes an efficient renovascular protection preventing the progression of inflammation and reno-cardiac damage. Overall, these data point to a potential clinical and veterinary role of dietary supplementation with the polyphenol-rich fraction of citrus bergamot in counteracting hypertension-induced reno-cardiac syndrome.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Humanos , Ratos , Masculino , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Acetato de Desoxicorticosterona/farmacologia , Lipocalina-2/metabolismo , Artéria Renal/metabolismo , Cloreto de Sódio , Interleucina-13/metabolismo , Ratos Wistar , Rim , Hipertensão/tratamento farmacológico , Pressão Sanguínea , Citocinas/metabolismo , Quimiocinas/metabolismo , Interleucina-12/metabolismo , Polifenóis/farmacologia , Água/farmacologia
5.
Front Integr Neurosci ; 17: 1271005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780094

RESUMO

Cerebral metabolites are associated with different physiological and pathological processes in brain tissue. Among them, the concentrations of N-acetylaspartate (NAA) and choline-containing compounds (Cho) in the thalamic region are recognized and analyzed as important predictive markers of brain impairment. The relationship among hypertension, modulation of brain metabolite levels and cerebral diseases is of recent investigation, leaving many unanswered questions regarding the origin and consequences of the metabolic damage caused in grey and white matter during hypertension. Here we provide evidence for the influence of hypertension on NAA and Cho ratios in hypertensive rat thalamus and how the use of natural occurring compounds ameliorates the balance of thalamic metabolites.

6.
Plants (Basel) ; 12(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765470

RESUMO

Salvia rosmarinus Spenn. is a native Mediterranean shrub belonging to the Lamiaceae family and is well-known as a flavoring and spicing agent. In addition to its classical use, it has drawn attention because its biological activities, due particularly to the presence of polyphenols, including carnosic acid and rosmarinic acid, and phenolic diterpenes as carnosol. In this study, the aerial part of rosemary was extracted with a hydroalcoholic solution through maceration, followed by ultrasound sonication, to obtain a terpenoids-rich Salvia rosmarinus extract (TRSrE) and a polyphenols-rich Salvia rosmarinus extract (PRSrE). After phytochemical characterization, both extracts were investigated for their antioxidant activity through a classical assay and with electron paramagnetic resonance (EPR) for their DPPH and hydroxyl radicals scavenging. Finally, their potential beneficial effects to reduce lipid accumulation in an in vitro model of NAFLD were evaluated.

7.
Int J Mol Sci ; 24(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37628916

RESUMO

The clinical use of anthracycline Doxorubicin as an antineoplastic drug in cancer therapy is limited by cardiotoxic effects that can lead to congestive heart failure. Recent studies have shown several promising activities of different species of the genus Ferula belonging to the Apiaceae Family. Ferula communis is the main source of Ferutinin-a bioactive compound isolated from many species of Ferula-studied both in vitro and in vivo because of their different effects, such as estrogenic, antioxidant, anti-inflammatory, and also antiproliferative and cytotoxic activity, performed in a dose-dependent and cell-dependent way. However, the potential protective role of Ferutinin in myocardium impairment, caused by chemotherapeutic drugs, still represents an unexplored field. The aim of this study was to test the effects of Ferutinin rich-Ferula communis L. root extract (FcFE) at different concentrations on H9C2 cells. Moreover, we evaluated its antioxidant properties in cardiomyocytes in order to explore new potential therapeutic activities never examined before in other experimental works. FcFE, at a concentration of 0.25 µM, in the H9C2 line, significantly reduced the ROS production induced by H2O2 (50 µM and 250 µM) and traced the cell mortality of the H9C2 co-treated with Ferutinin 0.25 µM and Doxorubicin (0.5 µM and 1 µM) to control levels. These results showed that FcFE could protect against Doxorubicin-induced cardiotoxicity. Further molecular characterization of this natural compound may open the way for testing FcFE at low concentrations in vivo and in clinical studies as an adjuvant in cancer therapy in association with anthracyclines to prevent side effects on heart cells.


Assuntos
Ferula , Neoplasias , Antioxidantes/farmacologia , Peróxido de Hidrogênio , Doxorrubicina/efeitos adversos , Pontos de Checagem do Ciclo Celular , Antraciclinas , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Extratos Vegetais/farmacologia
8.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629146

RESUMO

Evidence exists that the gut microbiota contributes to the alterations of lipid metabolism associated with high-fat diet (HFD). Moreover, the gut microbiota has been found to modulate the metabolism and absorption of dietary lipids, thereby affecting the formation of lipoproteins occurring at the intestinal level as well as systemically, though the pathophysiological implication of altered microbiota composition in HFD and its role in the development of atherosclerotic vascular disease (ATVD) remain to be better clarified. Recently, evidence has been collected indicating that supplementation with natural polyphenols and fibres accounts for an improvement of HFD-associated intestinal dysbiosis, thereby leading to improved lipidaemic profile. This study aimed to investigate the protective effect of a bergamot polyphenolic extract (BPE) containing 48% polyphenols enriched with albedo and pulp-derived micronized fibres (BMF) in the gut microbiota of HFD-induced dyslipidaemia. In particular, rats that received an HFD over a period of four consecutive weeks showed a significant increase in plasma cholesterol, triglycerides and plasma glucose compared to a normal-fat diet (NFD) group. This effect was accompanied by body weight increase and alteration of lipoprotein size and concentration, followed by high levels of MDA, a biomarker of lipid peroxidation. Treatment with a combination of BPE plus BMF (50/50%) resulted in a significant reduction in alterations of the metabolic parameters found in HFD-fed rats, an effect associated with increased size of lipoproteins. Furthermore, the effect of BPE plus BMF treatment on metabolic balance and lipoprotein size re-arrangement was associated with reduced gut-derived lipopolysaccharide (LPS) levels, an effect subsequent to improved gut microbiota as expressed by modulation of the Gram-negative bacteria Proteobacteria, as well as Firmicutes and Bacteroidetes. This study suggests that nutraceutical supplementation of HFD-fed rats with BPE and BMP or with their combination product leads to restored gut microbiota, an effect associated with lipoprotein size re-arrangement and better lipidaemic and metabolic profiles.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Animais , Ratos , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta , Lipoproteínas , Extratos Vegetais/farmacologia
9.
Plants (Basel) ; 12(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36904054

RESUMO

Ferula L., belonging to the Apiaceae family, is represented by about 170 species predominantly present in areas with a mild-warm-arid climate, including the Mediterranean region, North Africa and Central Asia. Numerous beneficial activities have been reported for this plant in traditional medicine, including antidiabetic, antimicrobial, antiproliferative, anti-dysentery, stomachache with diarrhea and cramps remedies. FER-E was obtained from the plant F. communis, and precisely from the root, collected in Sardinia, Italy. A total of 25 g of root was mixed with 125 g of acetone (ratio 1:5, room temperature). The solution was filtered, and the liquid fraction was subjected to high pressure liquid chromatographic separation (HPLC). In particular, 10 mg of dry root extract powder, from F. communis, was dissolved in 10.0 mL of methanol, filtered with a 0.2 µm PTFE filter and subjected to HPLC analysis. The net dry powder yield obtained was 2.2 g. In addition, to reduce the toxicity of FER-E, the component ferulenol was removed. High concentrations of FER-E have demonstrated a toxic effect against breast cancer, with a mechanism independent of the oxidative potential, which is absent in this extract. In fact, some in vitro tests were used and showed little or no oxidizing activity by the extract. In addition, we appreciated less damage on the respective healthy cell lines (breast), assuming that this extract could be used for its potential role against uncontrolled cancer growth. The results of this research have also shown that F. communis extract could be used together with tamoxifen, increasing its effectiveness, and reducing side effects. However, further confirmatory experiments should be carried out.

10.
Nutrients ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986064

RESUMO

High salt load is a known noxious stimulus for vascular cells and a risk factor for cardiovascular diseases in both animal models and humans. The stroke-prone spontaneously hypertensive rat (SHRSP) accelerates stroke predisposition upon high-salt dietary feeding. We previously demonstrated that high salt load causes severe injury in primary cerebral endothelial cells isolated from SHRSP. This cellular model offers a unique opportunity to test the impact of substances toward the mechanisms underlying high-salt-induced vascular damage. We tested the effects of a bergamot polyphenolic fraction (BPF) on high-salt-induced injury in SHRSP cerebral endothelial cells. Cells were exposed to 20 mM NaCl for 72 h either in the absence or the presence of BPF. As a result, we confirmed that high salt load increased cellular ROS level, reduced viability, impaired angiogenesis, and caused mitochondrial dysfunction with a significant increase in mitochondrial oxidative stress. The addition of BPF reduced oxidative stress, rescued cell viability and angiogenesis, and recovered mitochondrial function with a significant decrease in mitochondrial oxidative stress. In conclusion, BPF counteracts the key molecular mechanisms underlying high-salt-induced endothelial cell damage. This natural antioxidant substance may represent a valuable adjuvant to treat vascular disorders.


Assuntos
Citrus , Hipertensão , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Ratos Endogâmicos SHR , Células Endoteliais , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/efeitos adversos , Solução Salina , Acidente Vascular Cerebral/etiologia , Pressão Sanguínea
11.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203362

RESUMO

Obesity is one of the world's most serious public health issues, with a high risk of developing a wide range of diseases. As a result, focusing on adipose tissue dysfunction may help to prevent the metabolic disturbances commonly associated with obesity. Nutraceutical supplementation may be a crucial strategy for improving WAT inflammation and obesity and accelerating the browning process. The aim of this study was to perform a preclinical "proof of concept" study on Bergacyn®, an innovative formulation originating from a combination of bergamot polyphenolic fraction (BPF) and Cynara cardunculus (CyC), for the treatment of adipose tissue dysfunction. In particular, Bergacyn® supplementation in WD/SW-fed mice at doses of 50 mg/kg given orally for 12 weeks, was able to reduce body weight and total fat mass in the WD/SW mice, in association with an improvement in plasma biochemical parameters, including glycemia, total cholesterol, and LDL levels. In addition, a significant reduction in serum ALT levels was highlighted. The decreased WAT levels corresponded to an increased weight of BAT tissue, which was associated with a downregulation of PPARγ as compared to the vehicle group. Bergacyn® was able to restore PPARγ levels and prevent NF-kB overexpression in the WAT of mice fed a WD/SW diet, suggesting an improved oxidative metabolism and inflammatory status. These results were associated with a significant potentiation of the total antioxidant status in WD/SW mice. Finally, our data show, for the first time, that Bergacyn® supplementation may be a valuable approach to counteract adipose tissue dysfunction and obesity-associated effects on cardiometabolic risk.


Assuntos
Cynara , PPAR gama , Animais , Camundongos , Camundongos Obesos , Aumento de Peso , Redução de Peso , Obesidade/tratamento farmacológico , Tecido Adiposo , Extratos Vegetais/farmacologia
12.
Nutrients ; 14(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807891

RESUMO

Multiple sclerosis (MS) is a neurological and inflammatory autoimmune disease of the Central Nervous System in which selective activation of T and B lymphocytes prompts a reaction against myelin, inducing demyelination and axonal loss. Although MS is recognized to be an autoimmune pathology, the specific causes are many; thus, to date, it has been considered a disorder resulting from environmental factors in genetically susceptible individuals. Among the environmental factors hypothetically involved in MS, nutrition seems to be well related, although the role of nutritional factors is still unclear. The gut of mammals is home to a bacterial community of about 2000 species known as the "microbiota", whose composition changes throughout the life of each individual. There are five bacterial phylas that make up the microbiota in healthy adults: Firmicutes (79.4%), Bacteroidetes (16.9%), Actinobacteria (2.5%), Proteobacteria (1%) and Verrucomicrobia (0.1%). The diversity and abundance of microbial populations justifies a condition known as eubiosis. On the contrary, the state of dysbiosis refers to altered diversity and abundance of the microbiota. Many studies carried out in the last few years have demonstrated that there is a relationship between the intestinal microflora and the progression of multiple sclerosis. This correlation was also demonstrated by the discovery that patients with MS, treated with specific prebiotics and probiotics, have greatly increased bacterial diversity in the intestinal microbiota, which might be otherwise reduced or absent. In particular, natural extracts of Aloe vera and bergamot fruits, rich in polyphenols and with a high percentage of polysaccharides (mostly found in indigestible and fermentable fibers), appear to be potential candidates to re-equilibrate the gut microbiota in MS patients. The present review article aims to assess the pathophysiological mechanisms that reveal the role of the microbiota in the development of MS. In addition, the potential for supplementing patients undergoing early stages of MS with Aloe vera as well as bergamot fibers, on top of conventional drug treatments, is discussed.


Assuntos
Aloe , Citrus , Microbioma Gastrointestinal , Esclerose Múltipla , Animais , Disbiose/microbiologia , Humanos , Mamíferos , Verrucomicrobia
13.
Nutrients ; 14(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35458136

RESUMO

Cancer is one of the most widespread diseases globally and one of the leading causes of death. Known cancer treatments are chemotherapy, surgery, radiation therapy, targeted hormonal therapy, or a combination of these methods. Antitumor drugs, with different mechanisms, interfere with cancer growth by destroying cancer cells. However, anticancer drugs are dangerous, as they significantly affect both cancer cells and healthy cells. In addition, there may be the onset of systemic side effects perceived and mutagenicity, teratogenicity, and further carcinogenicity. Many polyphenolic extracts, taken on top of common anti-tumor drugs, can participate in the anti-proliferative effect of drugs and significantly reduce the side effects developed. This review aims to discuss the current scientific knowledge of the protective effects of polyphenols of the genera Vaccinium, Citrus, Olea, and Cynara on the side effects induced by four known chemotherapy, Cisplatin, Doxorubicin, Tamoxifen, and Paclitaxel. In particular, the summarized data will help to understand whether polyphenols can be used as adjuvants in cancer therapy, although further clinical trials will provide crucial information.


Assuntos
Antineoplásicos , Citrus , Cynara , Neoplasias , Olea , Vaccinium , Antineoplásicos/farmacologia , Emprego , Humanos , Neoplasias/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/uso terapêutico
14.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409057

RESUMO

The maintenance of the physiological values of blood pressure is closely related to unchangeable factors (genetic predisposition or pathological alterations) but also to modifiable factors (dietary fat and salt, sedentary lifestyle, overweight, inappropriate combinations of drugs, alcohol abuse, smoking and use of psychogenic substances). Hypertension is usually characterized by the presence of a chronic increase in systemic blood pressure above the threshold value and is an important risk factor for cardiovascular disease, including myocardial infarction, stroke, micro- and macro-vascular diseases. Hypertension is closely related to functional changes in the endothelium, such as an altered production of vasoconstrictive and vasodilator substances, which lead to an increase in vascular resistance. These alterations make the endothelial tissue unresponsive to autocrine and paracrine stimuli, initially determining an adaptive response, which over time lead to an increase in risk or disease. The gut microbiota is composed of a highly diverse bacterial population of approximately 1014 bacteria. A balanced intestinal microbiota preserves the digestive and absorbent functions of the intestine, protecting from pathogens and toxic metabolites in the circulation and reducing the onset of various diseases. The gut microbiota has been shown to produce unique metabolites potentially important in the generation of hypertension and endothelial dysfunction. This review highlights the close connection between hypertension, endothelial dysfunction and gut microbiota.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Animais , Bactérias , Pressão Sanguínea , Disbiose/microbiologia , Humanos , Hipertensão/microbiologia , Intestinos/microbiologia , Modelos Animais
15.
Vet Sci ; 9(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35324852

RESUMO

Varroatosis, caused by the Varroa destructor mite, is currently the most dangerous parasitic disease threatening the survival of honey bees worldwide. Its adverse effect on the welfare and health of honey bees requires the regular use of specific acaricides. This condition has led to a growing development of resistance phenomena towards the most frequently used drugs. In addition, another important aspect that should not be understated, is the toxicity and persistence of chemicals in the environment. Therefore, the identification of viable and environmentally friendly alternatives is urgently needed. In this scenario, essential oils are promising candidates. The aim of this study was to assess the contact toxicity, the fumigation efficacy and the repellent effect of Origanum heracleoticum L. essential oil (EO) against V. destructor mite. In the contact tests, each experimental replicate consisted of 15 viable adult female mites divided as follows: 5 treated with EO diluted in HPLC grade acetone, 5 treated with acetone alone (as negative control) and 5 treated with Amitraz diluted in acetone (as positive control). The EO was tested at concentrations of 0.125, 0.25, 0.5, 1 and 2 mg/mL. For each experimental replicate, mortality was manually assessed after one hour. The efficacy of EO fumigation was evaluated through prolonged exposure at different time intervals. After each exposure, the 5 mites constituting an experimental replicate were transferred to a Petri dish containing a honey bee larva and mortality was assessed after 48 h. The repellent action was investigated by implementing a directional choice test in a mandatory route. During the repellency tests the behavior of the mite (90 min after its introduction in the mandatory route) was not influenced by the EO. In contact tests, EO showed the best efficacy at 2 and 1 mg/mL concentrations, neutralizing (dead + inactivated) 90.9% and 80% of the mites, respectively. In fumigation tests, the mean mortality rate of V. destructor at maximum exposure time (90 min) was 60% and 84% at 24 and 48 h, respectively. Overall, these results demonstrate a significant efficacy of O. heracleoticum EO against V. destructor, suggesting a possible alternative use in the control of varroatosis in honey bee farms in order to improve Apis mellifera welfare and health and, consequently, the hive productions.

16.
Nutrients ; 14(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35276836

RESUMO

Elevated serum cholesterol levels, either associated or not with increased triglycerides, represent a risk of developing vascular injury, mostly leading to atherothrombosis-related diseases including myocardial infarction and stroke. Natural products have been investigated in the last few decades as they are seen to offer an alternative solution to counteract cardiometabolic risk, due to the occurrence of side effects with the use of statins, the leading drugs for treating hyperlipidemias. Red yeast rice (RYR), a monacolin K-rich natural extract, has been found to be effective in counteracting high cholesterol, being its use accompanied by consistent warnings by regulatory authorities based on the potential detrimental responses accompanying its statin-like chemical charcateristics. Here we compared the effects of RYR with those produced by bergamot polyphenolic fraction (BPF), a well-known natural extract proven to be effective in lowering both serum cholesterol and triglycerides in animals fed a hyperlipidemic diet. In particular, BPF at doses of 10 mg/Kg given orally for 30 consecutive days, counteracted the elevation of both serum LDL cholesterol (LDL-C) and triglycerides induced by the hyperlipidemic diet, an effect which was accompanied by significant reductions of malondialdehyde (MDA) and glutathione peroxidase serum levels, two biomarkers of oxidative stress. Furthermore, the activity of BPF was associated to increased HDL cholesterol (HDL-C) levels and to strong reduction of Proprotein convertase subtilisin/kexin type 9 (PCSK9) levels which were found increased in hyperlipidemic rats. In contrast, RYR at doses of 1 and 3 mg/Kg, produced only significant reduction of LDL-C with very poor effects on triglycerides, HDL-C, glutathione peroxidase, MDA and PCSK9 expression. This indicates that while BPF and RYR both produce serum cholesterol-lowering benefits, BPF produces additional effects on triglycerides and HDL cholesterol compared to RYR at the doses used throughout the study. These additional effects of BPF appear to be related to the reduction of PCSK9 expression and to the antioxidant properties of this extract compared to RYR, thereby suggesting a more complete protection from cardiometabolic risk.


Assuntos
Produtos Biológicos , Pró-Proteína Convertase 9 , Animais , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Dieta , Extratos Vegetais/farmacologia , Pró-Proteína Convertase 9/metabolismo , Ratos
17.
Sci Rep ; 12(1): 1207, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075185

RESUMO

Metabolic associated fatty liver disease (MAFLD), commonly known as non-alcoholic fatty liver disease, represents a continuum of events characterized by excessive hepatic fat accumulation which can progress to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and in some severe cases hepatocellular carcinoma. MAFLD might be considered as a multisystem disease that affects not only the liver but involves wider implications, relating to several organs and systems, the brain included. The present study aims to investigate changes associated with MAFLD-induced alteration of thalamic metabolism in vivo. DIAMOND (Diet-induced animal model of non-alcoholic fatty liver disease) mice were fed a chow diet and tap water (NC NW) or fat Western Diet (WD SW) for up to 28 weeks. At the baseline and weeks 4, 8, 20, 28 the thalamic neurochemical profile and total cerebral brain volume were evaluated longitudinally in both diet groups using 1H-MRS. To confirm the disease progression, at each time point, a subgroup of animals was sacrificed, the livers excised and placed in formalin. Liver histology was assessed and reviewed by an expert liver pathologist. MAFLD development significantly increases the thalamic levels of total N-acetylaspartate, total creatine, total choline, and taurine. Furthermore, in the WD SW group a reduction in total cerebral brain volume has been observed (p < 0.05 vs NC NW). Our results suggest that thalamic energy metabolism is affected by MAFLD progression. This metabolic imbalance, that is quantifiable by 1H-MRS in vivo, might cause structural damage to brain cells and dysfunctions of neurotransmitter release.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Tálamo/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Tamanho do Órgão , Espectroscopia de Prótons por Ressonância Magnética
18.
Life (Basel) ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36676026

RESUMO

Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.

19.
Plants (Basel) ; 12(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36616158

RESUMO

Olea europaea L. is a plant belonging to the Oleaceae family, widely grown around the Mediterranean Basin and its leaves are a source of phenolic compounds with antioxidant and anti-inflammatory capacity. Among these, oleuropein and luteolin-7-O-glucoside represent two major polyphenolic compounds in olive-leaf extract. Herein, a polystyrene resin was used to recover the polyphenolic fraction from the acetone-water leaf extract from Nocellara del Belice cultivar, which showed the higher level of analysed bioactive compounds, compared to Carolea cultivar. The antioxidant activity of the extract concentrated in phenolic compounds (OLECp) was evaluated through a classical assay and electron paramagnetic resonance (EPR) for DPPH and hydroxyl radicals scavenging. Thus, the anti-inflammatory activity and the potential beneficial effects in reducing lipid accumulation in an in vitro model of NAFLD using McA-RH7777 cells exposed to oleic acid (OA) were evaluated. Nile Red and Oil Red O have been used to stain the lipid accumulation, while the inflammatory status was assessed by Cytokines Bioplex Assay. OLECp (TPC: 92.93 ± 9.35 mg GAE/g, TFC: 728.12 ± 16.04 mg RE/g; 1 g of extract contains 315.250 mg of oleuropein and 17.44 mg of luteolin-7-O-glucoside) exerted a good radical scavenging capability (IC50: 2.30 ± 0.18 mg/mL) with a neutralizing power against DPPH and hydroxyl radicals, as confirmed by the decreased signal area of the EPR spectra. Moreover, OLECp at concentration of 25, 50 and 100 µg/mL counteracted the intracellular inflammatory status, as result of decreased intracellular lipid content. Our results highlighted the multiple properties and applications of an O. europaea extract concentrated in polyphenols, and the possibility to formulate novel nutraceuticals with antioxidant properties, destined to ameliorate human health.

20.
Nutrients ; 13(11)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34836326

RESUMO

Doxorubicin (Doxo) is a widely used antineoplastic drug which often induces cardiomyopathy, leading to congestive heart failure through the intramyocardial production of reactive oxygen species (ROS). Icariin (Ica) is a flavonoid isolated from Epimedii Herba (Berberidaceae). Some reports on the pharmacological activity of Ica explained its antioxidant and cardioprotective effects. The aim of our study was to assess the protective activities of Ica against Doxo-detrimental effects on rat heart-tissue derived embryonic cardiac myoblasts (H9c2 cells) and to identify, at least in part, the molecular mechanisms involved. Our results showed that pretreatment of H9c2 cells with 1 µM and 5 µM of Ica, prior to Doxo exposure, resulted in an improvement in cell viability, a reduction in ROS generation, the prevention of mitochondrial dysfunction and mPTP opening. Furthermore, for the first time, we identified one feasible molecular mechanism through which Ica could exerts its cardioprotective effects. Indeed, our data showed a significant reduction in Caveolin-1(Cav-1) expression levels and a specific inhibitory effect on phosphodiesterase 5 (PDE5a) activity, improving mitochondrial function compared to Doxo-treated cells. Besides, Ica significantly prevented apoptotic cell death and downregulated the main pro-autophagic marker Beclin-1 and LC3 lipidation rate, restoring physiological levels of activation of the protective autophagic process. These results suggest that Ica might have beneficial cardioprotective effects in attenuating cardiotoxicity in patients requiring anthracycline chemotherapy through the inhibition of oxidative stress and, in particular, through the modulation of Cav-1 expression levels and the involvement of PDE5a activity, thereby leading to cardiac cell survival.


Assuntos
Cardiotoxicidade/prevenção & controle , Caveolina 1/metabolismo , Flavonoides/farmacologia , Mioblastos Cardíacos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Autofagia/efeitos dos fármacos , Cardiotoxicidade/etiologia , Doxorrubicina , Estresse Oxidativo/efeitos dos fármacos , Ratos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA