Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomic Med ; 11(8): e2179, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37070724

RESUMO

BACKGROUND: Oral clefts and ectrodactyly are common, heterogeneous birth defects. We performed whole-exome sequencing (WES) analysis in a Syrian family. The proband presented with both orofacial clefting and ectrodactyly but not ectodermal dysplasia as typically seen in ectrodactyly, ectodermal dysplasia, and cleft lip/palate syndrome-3. A paternal uncle with only an oral cleft was deceased and unavailable for analysis. METHODS: Variant annotation, Mendelian inconsistencies, and novel variants in known cleft genes were examined. Candidate variants were validated using Sanger sequencing, and pathogenicity assessed by knocking out the tp63 gene in zebrafish to evaluate its role during zebrafish development. RESULTS: Twenty-eight candidate de novo events were identified, one of which is in a known oral cleft and ectrodactyly gene, TP63 (c.956G > T, p.Arg319Leu), and confirmed by Sanger sequencing. CONCLUSION: TP63 mutations are associated with multiple autosomal dominant orofacial clefting and limb malformation disorders. The p.Arg319Leu mutation seen in this patient is de novo but also novel. Two known mutations in the same codon (c.956G > A, p.(Arg319His; rs121908839, c.955C > T), p.Arg319Cys) cause ectrodactyly, providing evidence that mutating this codon is deleterious. While this TP63 mutation is the best candidate for the patient's clinical presentation, whether it is responsible for the entire phenotype is unclear. Generation and characterization of tp63 knockout zebrafish showed necrosis and rupture of the head at 3 days post-fertilization (dpf). The embryonic phenotype could not be rescued by injection of zebrafish or human messenger RNA (mRNA). Further functional analysis is needed to determine what proportion of the phenotype is due to this mutation.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Animais , Fenda Labial/genética , Fissura Palatina/genética , Peixe-Zebra/genética , Sequenciamento do Exoma , Síria , Mutação , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
2.
Blood ; 141(3): 231-237, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36322931

RESUMO

Germ line loss-of-function heterozygous mutations in the RUNX1 gene cause familial platelet disorder with associated myeloid malignancies (FPDMM) characterized by thrombocytopenia and a life-long risk of hematological malignancies. Although gene therapies are being considered as promising therapeutic options, current preclinical models do not recapitulate the human phenotype and are unable to elucidate the relative fitness of mutation-corrected and RUNX1-heterozygous mutant hematopoietic stem and progenitor cells (HSPCs) in vivo long term. We generated a rhesus macaque with an FPDMM competitive repopulation model using CRISPR/Cas9 nonhomologous end joining editing in the RUNX1 gene and the AAVS1 safe-harbor control locus. We transplanted mixed populations of edited autologous HSPCs and tracked mutated allele frequencies in blood cells. In both animals, RUNX1-edited cells expanded over time compared with AAVS1-edited cells. Platelet counts remained below the normal range in the long term. Bone marrows developed megakaryocytic dysplasia similar to human FPDMM, and CD34+ HSPCs showed impaired in vitro megakaryocytic differentiation, with a striking defect in polyploidization. In conclusion, the lack of a competitive advantage for wildtype or control-edited HSPCs over RUNX1 heterozygous-mutated HSPCs long term in our preclinical model suggests that gene correction approaches for FPDMM will be challenging, particularly to reverse myelodysplastic syndrome/ acute myeloid leukemia predisposition and thrombopoietic defects.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Animais , Humanos , Macaca mulatta , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patologia , Trombopoese , Fenótipo
3.
Blood Adv ; 5(23): 4949-4962, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34492681

RESUMO

RUNX1 is essential for the generation of hematopoietic stem cells (HSCs). Runx1-null mouse embryos lack definitive hematopoiesis and die in mid-gestation. However, although zebrafish embryos with a runx1 W84X mutation have defects in early definitive hematopoiesis, some runx1W84X/W84X embryos can develop to fertile adults with blood cells of multilineages, raising the possibility that HSCs can emerge without RUNX1. Here, using 3 new zebrafish runx1-/- lines, we uncovered the compensatory mechanism for runx1-independent hematopoiesis. We show that, in the absence of a functional runx1, a cd41-green fluorescent protein (GFP)+ population of hematopoietic precursors still emerge from the hemogenic endothelium and can colonize the hematopoietic tissues of the mutant embryos. Single-cell RNA sequencing of the cd41-GFP+ cells identified a set of runx1-/--specific signature genes during hematopoiesis. Significantly, gata2b, which normally acts upstream of runx1 for the generation of HSCs, was increased in the cd41-GFP+ cells in runx1-/- embryos. Interestingly, genetic inactivation of both gata2b and its paralog gata2a did not affect hematopoiesis. However, knocking out runx1 and any 3 of the 4 alleles of gata2a and gata2b abolished definitive hematopoiesis. Gata2 expression was also upregulated in hematopoietic cells in Runx1-/- mice, suggesting the compensatory mechanism is conserved. Our findings indicate that RUNX1 and GATA2 serve redundant roles for HSC production, acting as each other's safeguard.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA2/metabolismo , Hemangioblastos , Proteínas de Peixe-Zebra/metabolismo , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fator de Transcrição GATA2/genética , Hematopoese/genética , Células-Tronco Hematopoéticas , Camundongos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
DNA Repair (Amst) ; 107: 103173, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390914

RESUMO

A systematic knowledge of the roles of DNA repair genes at the level of the organism has been limited due to the lack of appropriate experimental approaches using animal model systems. Zebrafish has become a powerful vertebrate genetic model system with availability due to the ease of genome editing and large-scale phenotype screening. Here, we generated zebrafish mutants for 32 DNA repair and replication genes through multiplexed CRISPR/Cas9-mediated mutagenesis. Large-scale phenotypic characterization of our mutant collection revealed that three genes (atad5a, ddb1, pcna) are essential for proper embryonic development and hematopoiesis; seven genes (apex1, atrip, ino80, mre11a, shfm1, telo2, wrn) are required for growth and development during juvenile stage and six genes (blm, brca2, fanci, rad51, rad54l, rtel1) play critical roles in sex development. Furthermore, mutation in six genes (atad5a, brca2, polk, rad51, shfm1, xrcc1) displayed hypersensitivity to DNA damage agents. Our zebrafish mutant collection provides a unique resource for understanding of the roles of DNA repair genes at the organismal level.


Assuntos
Edição de Genes , Animais , Peixe-Zebra
5.
J Neurogenet ; 35(2): 74-83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970744

RESUMO

KCTD7 is a member of the potassium channel tetramerization domain-containing protein family and has been associated with progressive myoclonic epilepsy (PME), characterized by myoclonus, epilepsy, and neurological deterioration. Here we report four affected individuals from two unrelated families in which we identified KCTD7 compound heterozygous single nucleotide variants through exome sequencing. RNAseq was used to detect a non-annotated splicing junction created by a synonymous variant in the second family. Whole-cell patch-clamp analysis of neuroblastoma cells overexpressing the patients' variant alleles demonstrated aberrant potassium regulation. While all four patients experienced many of the common clinical features of PME, they also showed variable phenotypes not previously reported, including dysautonomia, brain pathology findings including a significantly reduced thalamus, and the lack of myoclonic seizures. To gain further insight into the pathogenesis of the disorder, zinc finger nucleases were used to generate kctd7 knockout zebrafish. Kctd7 homozygous mutants showed global dysregulation of gene expression and increased transcription of c-fos, which has previously been correlated with seizure activity in animal models. Together these findings expand the known phenotypic spectrum of KCTD7-associated PME, report a new animal model for future studies, and contribute valuable insights into the disease.


Assuntos
Epilepsias Mioclônicas Progressivas/genética , Canais de Potássio/genética , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Epilepsias Mioclônicas Progressivas/fisiopatologia , Linhagem , Fenótipo , Peixe-Zebra
6.
Hum Mutat ; 41(12): 2105-2118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32906187

RESUMO

Holoprosencephaly (HPE) is the most common congenital anomaly affecting the forebrain and face in humans and occurs as frequently as 1:250 conceptions or 1:10,000 livebirths. Sonic Hedgehog signaling molecule is one of the best characterized HPE genes that plays crucial roles in numerous developmental processes including midline neural patterning and craniofacial development. The Frizzled class G-protein coupled receptor Smoothened (SMO), whose signaling activity is tightly regulated, is the sole obligate transducer of Hedgehog-related signals. However, except for previous reports of somatic oncogenic driver mutations in human cancers (or mosaic tumors in rare syndromes), any potential disease-related role of SMO genetic variation in humans is largely unknown. To our knowledge, ours is the first report of a human hypomorphic variant revealed by functional testing of seven distinct nonsynonymous SMO variants derived from HPE molecular and clinical data. Here we describe several zebrafish bioassays developed and guided by a systems biology analysis. This analysis strategy, and detection of hypomorphic variation in human SMO, demonstrates the necessity of integrating the genomic variant findings in HPE probands with other components of the Hedgehog gene regulatory network in overall medical interpretations.


Assuntos
Holoprosencefalia/genética , Holoprosencefalia/patologia , Mutação/genética , Receptor Smoothened/química , Receptor Smoothened/genética , Sequência de Aminoácidos , Animais , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Humanos , Mutação com Perda de Função/genética , Modelos Biológicos , Morfolinos/farmacologia , Mutagênese/genética , Fenótipo , Domínios Proteicos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
7.
Thyroid ; 30(2): 314-328, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31952464

RESUMO

Background: Patients with mutations of the thyroid hormone receptor alpha (THRA) gene show resistance to thyroid hormone alpha (RTHα). No amendable mouse models are currently available to elucidate deleterious effects of TRα1 mutants during early development. Zebrafish with transient suppressed expression by morpholino knockdown and ectopic expression of TRα1 mutants in the embryos have been reported. However, zebrafish with germline transmittable mutations have not been reported. The stable expression of thra mutants from embryos to adulthood facilitated the study of molecular actions of TRα1 mutants during development. Methods: In contrast to human and mice, the thra gene is duplicated in zebrafish, thraa, and thrab. Using CRISPR/Cas9-mediated targeted mutagenesis, we created dominant negative mutations in the two duplicated thra genes. We comprehensively analyzed the molecular and phenotypic characteristics of mutant fish during development. Results: Adult and juvenile homozygous thrab 1-bp ins (m/m) mutants exhibited severe growth retardation, but adult homozygous thraa 8-bp ins (m/m) mutants had very mild growth impairment. Expression of the growth hormone (gh1) and insulin-like growth factor 1 was markedly suppressed in homozygous thrab 1-bp ins (m/m) mutants. Decreased messenger RNA and protein levels of triiodothyronine-regulated keratin genes and inhibited keratinocyte proliferation resulted in hypoplasia of the epidermis in adult and juvenile homozygous thrab 1-bp ins (m/m) mutants, but not homozygous thraa 8-bp ins (m/m) mutants. RNA-seq analysis showed that homozygous thrab 1-bp ins (m/m) mutation had global impact on the functions of the adult pituitary. However, no morphological defects nor any changes in the expression of gh1 and keratin genes were observed in the embryos and early larvae. Thus, mutations of either the thraa or thrab gene did not affect initiation of embryogenesis. But the mutation of the thrab gene, but not the thraa gene, is detrimental in postlarval growth and skin development. Conclusions: The thra duplicated genes are essential to control temporal coordination in postlarval growth and development in a tissue-specific manner. We uncovered novel functions of the duplicated thra genes in zebrafish in development. These mutant zebrafish could be used as a model for further analysis of TRα1 mutant actions and for rapid screening of therapeutics for RTHα.


Assuntos
Genes erbA/genética , Transtornos do Crescimento/metabolismo , Receptores alfa dos Hormônios Tireóideos/metabolismo , Síndrome da Resistência aos Hormônios Tireóideos/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Transtornos do Crescimento/genética , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Síndrome da Resistência aos Hormônios Tireóideos/genética , Peixe-Zebra/genética
8.
Dis Model Mech ; 12(12)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31727854

RESUMO

Mutations in the gene AK2 are responsible for reticular dysgenesis (RD), a rare and severe form of primary immunodeficiency in children. RD patients have a severely shortened life expectancy and without treatment die, generally from sepsis soon after birth. The only available therapeutic option for RD is hematopoietic stem cell transplantation (HSCT). To gain insight into the pathophysiology of RD, we previously created zebrafish models for Ak2 deficiencies. One of the clinical features of RD is hearing loss, but its pathophysiology and causes have not been determined. In adult mammals, sensory hair cells of the inner ear do not regenerate; however, their regeneration has been observed in several non-mammalian vertebrates, including zebrafish. Therefore, we used our RD zebrafish models to determine whether Ak2 deficiency affects sensory organ development and/or hair cell regeneration. Our studies indicated that Ak2 is required for the correct development, survival and regeneration of sensory hair cells. Interestingly, Ak2 deficiency induces the expression of several oxidative stress markers and it triggers an increased level of cell death in the hair cells. Finally, we show that glutathione treatment can partially rescue hair cell development in the sensory organs in our RD models, pointing to the potential use of antioxidants as a therapeutic treatment supplementing HSCT to prevent or ameliorate sensorineural hearing deficits in RD patients.


Assuntos
Adenilato Quinase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/fisiologia , Perda Auditiva Neurossensorial/metabolismo , Leucopenia/metabolismo , Regeneração , Imunodeficiência Combinada Severa/metabolismo , Alelos , Animais , Animais Geneticamente Modificados , Morte Celular , Linhagem Celular , Cruzamentos Genéticos , Modelos Animais de Doenças , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Transplante de Células-Tronco Hematopoéticas , Leucopenia/genética , Microscopia Confocal , Estresse Oxidativo , Fenótipo , Imunodeficiência Combinada Severa/genética , Estresse Fisiológico , Peixe-Zebra
9.
Hum Mol Genet ; 28(24): 4173-4185, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31691804

RESUMO

DHX15, a DEAH box containing RNA helicase, is a splicing factor required for the last step of splicing. Recent studies identified a recurrent mutational hotspot, R222G, in DHX15 in ∼ 6% of acute myeloid leukemia (AML) patients that carry the fusion protein RUNX1-RUNX1T1 produced by t (8;21) (q22;q22). Studies using yeast mutants showed that substitution of G for the residue equivalent to R222 leads to loss of its helicase function, suggesting that it is a loss-of-function mutation. To elucidate the role of DHX15 during development, we established the first vertebrate knockout model with CRISPR/Cas9 in zebrafish. Our data showed that dhx15 expression is enriched in the brain, eyes, pectoral fin primordia, liver and intestinal bulb during embryonic development. Dhx15 deficiency leads to pleiotropic morphological phenotypes in homozygous mutant embryos starting at 3 days post fertilization (dpf) that result in lethality by 7 dpf, revealing an essential role during embryonic development. RNA-seq analysis suggested important roles of Dhx15 in chromatin and nucleosome assembly and regulation of the Mdm2-p53 pathway. Interestingly, exons corresponding to the alternate transcriptional start sites for tp53 and mdm2 were preferentially expressed in the mutant embryos, leading to significant upregulation of their alternate isoforms, Δ113p53 (orthologous to Δ133p53 isoform in human) and mdm2-P2 (isoform using distal promoter P2), respectively. We speculate that these alterations in the Mdm2-p53 pathway contribute to the development of AML in patients with t(8;21) and somatically mutated DHX15.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Helicases/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Peixe-Zebra/genética , Processamento Alternativo , Animais , Animais Geneticamente Modificados , Humanos , Regiões Promotoras Genéticas , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Helicases/metabolismo , Sítios de Splice de RNA , Splicing de RNA , Fatores de Processamento de RNA/genética , Sítio de Iniciação de Transcrição , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
10.
PLoS Genet ; 14(12): e1007821, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30540754

RESUMO

Fanconi Anemia (FA) is a genomic instability syndrome resulting in aplastic anemia, developmental abnormalities, and predisposition to hematological and other solid organ malignancies. Mutations in genes that encode proteins of the FA pathway fail to orchestrate the repair of DNA damage caused by DNA interstrand crosslinks. Zebrafish harbor homologs for nearly all known FA genes. We used multiplexed CRISPR/Cas9-mediated mutagenesis to generate loss-of-function mutants for 17 FA genes: fanca, fancb, fancc, fancd1/brca2, fancd2, fance, fancf, fancg, fanci, fancj/brip1, fancl, fancm, fancn/palb2, fanco/rad51c, fancp/slx4, fancq/ercc4, fanct/ube2t, and two genes encoding FA-associated proteins: faap100 and faap24. We selected two indel mutations predicted to cause premature truncations for all but two of the genes, and a total of 36 mutant lines were generated for 19 genes. Generating two independent mutant lines for each gene was important to validate their phenotypic consequences. RT-PCR from homozygous mutant fish confirmed the presence of transcripts with indels in all genes. Interestingly, 4 of the indel mutations led to aberrant splicing, which may produce a different protein than predicted from the genomic sequence. Analysis of RNA is thus critical in proper evaluation of the consequences of the mutations introduced in zebrafish genome. We used fluorescent reporter assay, and western blots to confirm loss-of-function for several mutants. Additionally, we developed a DEB treatment assay by evaluating morphological changes in embryos and confirmed that homozygous mutants from all the FA genes that could be tested (11/17), displayed hypersensitivity and thus were indeed null alleles. Our multiplexing strategy helped us to evaluate 11 multiple gene knockout combinations without additional breeding. Homozygous zebrafish for all 19 single and 11 multi-gene knockouts were adult viable, indicating FA genes in zebrafish are generally not essential for early development. None of the mutant fish displayed gross developmental abnormalities except for fancp-/- fish, which were significantly smaller in length than their wildtype clutch mates. Complete female-to-male sex reversal was observed in knockouts for 12/17 FA genes, while partial sex reversal was seen for the other five gene knockouts. All adult females were fertile, and among the adult males, all were fertile except for the fancd1 mutants and one of the fancj mutants. We report here generation and characterization of zebrafish knockout mutants for 17 FA disease-causing genes, providing an integral resource for understanding the pathophysiology associated with the disrupted FA pathway.


Assuntos
Anemia de Fanconi/genética , Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas , Dano ao DNA , Anemia de Fanconi/fisiopatologia , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Mutação da Fase de Leitura , Técnicas de Inativação de Genes , Humanos , Masculino , Fenótipo , Splicing de RNA/genética , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia , Desenvolvimento Sexual/genética , Desenvolvimento Sexual/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
11.
Ann Rheum Dis ; 77(4): 612-619, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358286

RESUMO

OBJECTIVES: To characterise the clinical features, immune manifestations and molecular mechanisms in a recently described autoinflammatory disease caused by mutations in TRNT1, a tRNA processing enzyme, and to explore the use of cytokine inhibitors in suppressing the inflammatory phenotype. METHODS: We studied nine patients with biallelic mutations in TRNT1 and the syndrome of congenital sideroblastic anaemia with immunodeficiency, fevers and developmental delay (SIFD). Genetic studies included whole exome sequencing (WES) and candidate gene screening. Patients' primary cells were used for deep RNA and tRNA sequencing, cytokine profiling, immunophenotyping, immunoblotting and electron microscopy (EM). RESULTS: We identified eight mutations in these nine patients, three of which have not been previously associated with SIFD. Three patients died in early childhood. Inflammatory cytokines, mainly interleukin (IL)-6, interferon gamma (IFN-γ) and IFN-induced cytokines were elevated in the serum, whereas tumour necrosis factor (TNF) and IL-1ß were present in tissue biopsies of patients with active inflammatory disease. Deep tRNA sequencing of patients' fibroblasts showed significant deficiency of mature cytosolic tRNAs. EM of bone marrow and skin biopsy samples revealed striking abnormalities across all cell types and a mix of necrotic and normal-appearing cells. By immunoprecipitation, we found evidence for dysregulation in protein clearance pathways. In 4/4 patients, treatment with a TNF inhibitor suppressed inflammation, reduced the need for blood transfusions and improved growth. CONCLUSIONS: Mutations of TRNT1 lead to a severe and often fatal syndrome, linking protein homeostasis and autoinflammation. Molecular diagnosis in early life will be crucial for initiating anti-TNF therapy, which might prevent some of the severe disease consequences.


Assuntos
Anemia Sideroblástica/genética , Anti-Inflamatórios/uso terapêutico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Síndromes de Imunodeficiência/genética , Mutação , Nucleotidiltransferases/genética , RNA de Transferência/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Anemia Sideroblástica/sangue , Criança , Pré-Escolar , Citocinas/sangue , Citocinas/genética , Deficiências do Desenvolvimento/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Humanos , Imunofenotipagem , Masculino , Linhagem , Fenótipo , Fator de Necrose Tumoral alfa/análise , Sequenciamento do Exoma
12.
Sci Rep ; 6: 29946, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27425195

RESUMO

Phosphoribosyl pyrophosphate synthetase-1 (PRPS1) is a key enzyme in nucleotide biosynthesis, and mutations in PRPS1 are found in several human diseases including nonsyndromic sensorineural deafness, Charcot-Marie-Tooth disease-5, and Arts Syndrome. We utilized zebrafish as a model to confirm that mutations in PRPS1 result in phenotypic deficiencies in zebrafish similar to those in the associated human diseases. We found two paralogs in zebrafish, prps1a and prps1b and characterized each paralogous mutant individually as well as the double mutant fish. Zebrafish prps1a mutants and prps1a;prps1b double mutants showed similar morphological phenotypes with increasingly severe phenotypes as the number of mutant alleles increased. Phenotypes included smaller eyes and reduced hair cell numbers, consistent with the optic atrophy and hearing impairment observed in human patients. The double mutant also showed abnormal development of primary motor neurons, hair cell innervation, and reduced leukocytes, consistent with the neuropathy and recurrent infection of the human patients possessing the most severe reductions of PRPS1 activity. Further analyses indicated the phenotypes were associated with a prolonged cell cycle likely resulting from reduced nucleotide synthesis and energy production in the mutant embryos. We further demonstrated the phenotypes were caused by delays in the tissues most highly expressing the prps1 genes.


Assuntos
Ribose-Fosfato Pirofosfoquinase/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Orelha Interna/embriologia , Orelha Interna/inervação , Orelha Interna/metabolismo , Embrião não Mamífero/metabolismo , Olho/metabolismo , Olho/patologia , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese , Humanos , Leucócitos/metabolismo , Modelos Biológicos , Neurônios Motores/metabolismo , Mutação/genética , Fenótipo , Pigmentação/genética , Ribose-Fosfato Pirofosfoquinase/genética , S-Adenosilmetionina/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
13.
Blood ; 124(1): 70-8, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24850758

RESUMO

CBFß and RUNX1 form a DNA-binding heterodimer and are both required for hematopoietic stem cell (HSC) generation in mice. However, the exact role of CBFß in the production of HSCs remains unclear. Here, we generated and characterized 2 zebrafish cbfb null mutants. The cbfb(-/-) embryos underwent primitive hematopoiesis and developed transient erythromyeloid progenitors, but they lacked definitive hematopoiesis. Unlike runx1 mutants, in which HSCs are not formed, nascent, runx1(+)/c-myb(+) HSCs were formed in cbfb(-/-) embryos. However, the nascent HSCs were not released from the aorta-gonad-mesonephros (AGM) region, as evidenced by the accumulation of runx1(+) cells in the AGM that could not enter circulation. Moreover, wild-type embryos treated with an inhibitor of RUNX1-CBFß interaction, Ro5-3335, phenocopied the hematopoietic defects in cbfb(-/-) mutants, rather than those in runx1(-/-) mutants. Finally, we found that cbfb was downstream of the Notch pathway during HSC development. Our data suggest that runx1 and cbfb are required at 2 different steps during early HSC development. CBFß is not required for nascent HSC emergence but is required for the release of HSCs from AGM into circulation. Our results also indicate that RUNX1 can drive the emergence of nascent HSCs in the AGM without its heterodimeric partner CBFß.


Assuntos
Fator de Ligação a CCAAT/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Fator de Ligação a CCAAT/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Técnicas de Inativação de Genes , Hibridização In Situ , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
14.
Cell Biosci ; 1: 32, 2011 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21943404

RESUMO

BACKGROUND: Despite detailed in vivo knowledge of glycolytic enolases and many bacterial non-enolase members of the superfamily, little is known about the in vivo function of vertebrate non-enolase enolase superfamily members (ENOSF1s). Results of previous studies suggest involvement of the ß splice form of ENOSF1 in breast and colon cancers. This study used the zebrafish (Danio rerio) as a vertebrate model of ENOSF1ß function. RESULTS: Whole mount in situ hybridization (WISH) showed that zebrafish ENOSF1ß (enosf1b) is zygotic and expressed ubiquitously through the first 24 hours post fertilization (hpf). After 24 hpf, enosf1b expression is restricted to the notochord. Embryos injected with enosf1b-EGFP mRNA grew slower than EGFP mRNA-injected embryos but caught up to the EGFP-injected embryos by 48 hpf. Embryos injected with ATG or exon 10 enosf1b mRNA-targeting morpholinos had kinked notochords, shortened anterior-posterior axes, and circulatory edema. WISH for ntl or pax2a expression showed that embryos injected with either morpholino have deformed notochord and pronephros. TUNEL staining revealed increased apoptosis in the peri-notochord region. CONCLUSIONS: This study is the first report of ENOSF1 function in a vertebrate and shows that ENOSF1 is required for embryonic development. Increased apoptosis following enosf1b knockdown suggests a potential survival advantage for increased ENOSF1ß expression in human cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA