Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712254

RESUMO

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.

2.
J Clin Invest ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713535

RESUMO

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.

3.
Cancers (Basel) ; 15(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958304

RESUMO

Chemotherapy remains a primary treatment for younger AML patients, though many relapse. Data from our group have shown that highly phosphorylated S6 in blasts may predict response to sirolimus given with chemotherapy. We report the results of a phase I study of this combination in newly diagnosed AML and the pharmacodynamic analysis of pS6 before and after treatment. Subjects received sirolimus (12 mg on day 1, 4 mg daily, days 2-10), then idarubicin and cytarabine (days 4-10). Response was assessed at hematologic recovery or by day 42 using a modified IWG criteria. Fifty-five patients received sirolimus. Toxicity was similar to published 7 + 3 data, and 53% had high-, 27% intermediate-, and 20% favorable-risk disease. Forty-four percent of the high-risk patients entered into CR/CRp. Seventy-nine percent of the intermediate-risk subjects had a CR/CRp. All favorable-risk patients had a CR by day 42; 9/11 remained alive and in remission with a median follow-up of 660 days. Additionally, 41/55 patients had adequate samples for pharmacodynamic analysis. All patients demonstrated activation of S6 prior to therapy, in contrast to 67% seen in previous studies of relapsed AML. mTORC1 inhibition was observed in 66% of patients without enrichment among patients who achieved remission. We conclude that sirolimus and 7 + 3 is a well-tolerated and safe regimen. mTORC1 appears to be activated in almost all patients at diagnosis of AML. Inhibition of mTORC1 did not differ based on response, suggesting that AML cells may have redundant signaling pathways that regulate chemosensitivity in the presence of mTORC1 inhibition.

4.
Cancer Res Commun ; 3(8): 1594-1606, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37599786

RESUMO

Despite recent therapeutic advances, the 5-year survival rate for adults with acute myeloid leukemia (AML) is poor and standard-of-care chemotherapy is associated with significant toxicity, highlighting the need for new therapeutic approaches. Recent work from our group and others established that the G protein-coupled estrogen receptor (GPER) is tumor suppressive in melanoma and other solid tumors. We performed a preliminary screen of human cancer cell lines from multiple malignancies and found that LNS8801, a synthetic pharmacologic agonist of GPER currently in early phase clinical trials, promoted apoptosis in human AML cells. Using human AML cell lines and primary cells, we show that LNS8801 inhibits human AML in preclinical in vitro models, while not affecting normal mononuclear cells. Although GPER is broadly expressed in normal and malignant myeloid cells, this cancer-specific LNS8801-induced inhibition appeared to be independent of GPER signaling. LNS8801 induced AML cell death primarily through a caspase-dependent apoptosis pathway. This was independent of secreted classical death receptor ligands, and instead required induction of reactive oxygen species (ROS) and activation of endoplasmic reticulum (ER) stress response pathways including IRE1α. These studies demonstrate a novel activity of LNS8801 in AML cells and show that targeting ER stress with LNS8801 may be a useful therapeutic approach for AML. Significance: Previous work demonstrated that LNS8801 inhibits cancer via GPER activation, especially in solid tumors. Here we show that LNS8801 inhibits AML via GPER-independent mechanisms that include ROS induction and ER activation.


Assuntos
Endorribonucleases , Leucemia Mieloide Aguda , Adulto , Humanos , Espécies Reativas de Oxigênio , Proteínas Serina-Treonina Quinases , Leucemia Mieloide Aguda/tratamento farmacológico , Estrogênios , Estresse do Retículo Endoplasmático
5.
Am J Hematol ; 98(8): 1254-1264, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37334852

RESUMO

Intensive chemotherapy with cytarabine and anthracycline (7&3) remains the standard therapy for patients medically fit for induction, but the assessment of fitness remains controversial. Venetoclax and hypomethylating agent (ven/HMA) combination therapy has improved outcomes in unfit patients but no prospective study has assessed ven/HMA versus 7&3 as initial therapy in older, fit patients. Given no studies and expectation of ven/HMA use in patients outside of trial criteria, we evaluated retrospective outcomes among newly diagnosed patients. A nationwide electronic health record (EHR)-derived database and the University of Pennsylvania EHR identified 312 patients receiving 7&3 and 488 receiving ven/HMA who were 60-75 years old without history of organ failure. Ven/HMA patients were older and more likely to have secondary AML, adverse cytogenetics, and adverse mutations. Median overall survival (OS) for patients receiving intensive chemotherapy was 22 versus 10 months for ven/HMA (HR 0.53, 95% CI 0.40-0.60). Controlling for measured baseline characteristic imbalances reduced survival advantage by half (HR 0.71, 95% CI 0.53-0.94). A sub-group of patients with equipoise, likelihood at least 30%-70% of receiving either treatment, had similar OS outcomes (HR 1.10, 95% CI 0.75-1.6). Regarding safety outcomes, 60-day mortality was higher for ven/HMA (15% vs. 6% at 60 days) despite higher documented infections and febrile neutropenia for 7&3. In this multicenter real-word dataset, patients selected for intensive chemotherapy had superior OS but a large group had similar outcomes with ven/HMA. Prospective randomized studies, controlling for both measured and unmeasured confounders, must confirm this outcome.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Humanos , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
6.
Cancers (Basel) ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497385

RESUMO

After forty years of essentially unchanged treatment in acute myeloid leukemia (AML), innovation over the past five years has been rapid, with nine drug approvals from 2016 to 2021. Increased understanding of the molecular changes and genetic ontology of disease have led to targeting mutations in isocitrate dehydrogenase, FMS-like tyrosine kinase 3 (FLT3), B-cell lymphoma 2 and hedgehog pathways. Yet outcomes remain variable; especially in defined molecular and genetic subgroups such as NPM1 (Nucleophosmin 1) mutations, 11q23/KMT2A rearranged and TP53 mutations. Emerging therapies seek to address these unmet needs, and all three of these subgroups have promising new therapeutic approaches. Here, we will discuss the normal biological roles of menin in acute leukemia, notably in KMT2A translocations and NPM1 mutation, as well as current drug development. We will also explore how CD47 inhibition may move immunotherapy into front-line settings and unlock new treatment strategies in TP53 mutated disease. We will then consider how these new therapeutic advances may change the management of AML overall.

7.
Blood Adv ; 6(13): 3997-4005, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35507945

RESUMO

CPX-351 and venetoclax and azacitidine (ven/aza) are both indicated as initial therapy for acute myeloid leukemia (AML) in older adults. In the absence of prospective randomized comparisons of these regimens, we used retrospective observational data to evaluate various outcomes for patients with newly diagnosed AML receiving either CPX-351 (n = 217) or ven/aza (n = 439). This study used both a nationwide electronic health record (EHR)-derived de-identified database and the University of Pennsylvania EHR. Our study includes 217 patients who received CPX-351 and 439 who received ven/aza. Paitents receiving ven/aza were older, more likely to be treated in the community, and more likely to have a diagnosis of de novo acute myeloid leukemia. Other baseline covariates were not statistically significantly different between the groups. Median overall survival (OS) for all patients was 12 months and did not differ based on therapy (13 months for CPX-351 vs 11 months for ven/aza; hazard ratio, 0.88; 95% confidence interval, 0.71-1.08; P = .22). OS was similar across multiple sensitivity analyses. Regarding safety outcomes, early mortality was similar (10% vs 13% at 60 days). However, documented infections were higher with CPX-351 as were rates of febrile neutropenia. Hospital length of stay, including any admission before the next cycle of therapy, was more than twice as long for CPX-351. In this large multicenter real-world dataset, there was no statistically significant difference in OS. Prospective randomized studies with careful attention to side effects, quality of life, and impact on transplant outcomes are needed in these populations.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Idoso , Azacitidina/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes , Citarabina , Daunorrubicina , Humanos , Estudos Prospectivos , Qualidade de Vida , Estudos Retrospectivos , Sulfonamidas
8.
Blood ; 139(24): 3546-3557, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35286378

RESUMO

Older patients with acute myeloid leukemia (AML) have high relapse risk and poor survival after allogeneic hematopoietic cell transplantation (HCT). Younger patients may receive myeloablative conditioning to mitigate relapse risk associated with high-risk genetics or measurable residual disease (MRD), but older adults typically receive reduced-intensity conditioning (RIC) to limit toxicity. To identify factors that drive HCT outcomes in older patients, we performed targeted mutational analysis (variant allele fraction ≥2%) on diagnostic samples from 295 patients with AML aged ≥60 years who underwent HCT in first complete remission, 91% of whom received RIC, and targeted duplex sequencing at remission in a subset comprising 192 patients. In a multivariable model for leukemia-free survival (LFS) including baseline genetic and clinical variables, we defined patients with low (3-year LFS, 85%), intermediate (55%), high (35%), and very high (7%) risk. Before HCT, 79.7% of patients had persistent baseline mutations, including 18.3% with only DNMT3A or TET2 (DT) mutations and 61.4% with other mutations (MRD positive). In univariable analysis, MRD positivity was associated with increased relapse and inferior LFS, compared with DT and MRD-negative mutations. However, in a multivariable model accounting for baseline risk, MRD positivity had no independent impact on LFS, most likely because of its significant association with diagnostic genetic characteristics, including MDS-associated gene mutations, TP53 mutations, and high-risk karyotype. In summary, molecular associations with MRD positivity and transplant outcomes in older patients with AML are driven primarily by baseline genetics, not by mutations present in remission. In this group of patients, where high-intensity conditioning carries substantial risk of toxicity, alternative approaches to mitigating MRD-associated relapse risk are needed.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Idoso , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Recidiva , Estudos Retrospectivos , Condicionamento Pré-Transplante , Transplante Homólogo
9.
Blood Cancer Discov ; 3(2): 116-135, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35015684

RESUMO

Polycomb repressive epigenetic complexes are recurrently dysregulated in cancer. Unlike polycomb repressive complex 2 (PRC2), the role of PRC1 in oncogenesis and therapy resistance is not well-defined. Here, we demonstrate that highly recurrent mutations of the PRC1 subunits BCOR and BCORL1 in leukemia disrupt assembly of a noncanonical PRC1.1 complex, thereby selectively unlinking the RING-PCGF enzymatic core from the chromatin-targeting auxiliary subcomplex. As a result, BCOR-mutated PRC1.1 is localized to chromatin but lacks repressive activity, leading to epigenetic reprogramming and transcriptional activation at target loci. We define a set of functional targets that drive aberrant oncogenic signaling programs in PRC1.1-mutated cells and primary patient samples. Activation of these PRC1.1 targets in BCOR-mutated cells confers acquired resistance to treatment while sensitizing to targeted kinase inhibition. Our study thus reveals a novel epigenetic mechanism that explains PRC1.1 tumor-suppressive activity and identifies a therapeutic strategy in PRC1.1-mutated cancer. SIGNIFICANCE: We demonstrate that BCOR and BCORL1 mutations in leukemia unlink PRC1.1 repressive function from target genes, resulting in epigenetic reprogramming and activation of aberrant cell signaling programs that mediate treatment resistance. Our study provides mechanistic insights into the pathogenesis of PRC1.1-mutated leukemia that inform novel therapeutic approaches. This article is highlighted in the In This Issue feature, p. 85.


Assuntos
Carcinogênese , Leucemia , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Cromatina , Epigênese Genética/genética , Humanos , Leucemia/genética , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética
10.
Mol Cell ; 81(17): 3604-3622.e10, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34358447

RESUMO

The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fatores Reguladores de Interferon/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proto-Oncogene Mas , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Proteínas Supressoras de Tumor/genética
11.
Nature ; 587(7834): 477-482, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116311

RESUMO

Myeloid malignancies, including acute myeloid leukaemia (AML), arise from the expansion of haematopoietic stem and progenitor cells that acquire somatic mutations. Bulk molecular profiling has suggested that mutations are acquired in a stepwise fashion: mutant genes with high variant allele frequencies appear early in leukaemogenesis, and mutations with lower variant allele frequencies are thought to be acquired later1-3. Although bulk sequencing can provide information about leukaemia biology and prognosis, it cannot distinguish which mutations occur in the same clone(s), accurately measure clonal complexity, or definitively elucidate the order of mutations. To delineate the clonal framework of myeloid malignancies, we performed single-cell mutational profiling on 146 samples from 123 patients. Here we show that AML is dominated by a small number of clones, which frequently harbour co-occurring mutations in epigenetic regulators. Conversely, mutations in signalling genes often occur more than once in distinct subclones, consistent with increasing clonal diversity. We mapped clonal trajectories for each sample and uncovered combinations of mutations that synergized to promote clonal expansion and dominance. Finally, we combined protein expression with mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Our findings provide insights into the pathogenesis of myeloid transformation and how clonal complexity evolves with disease progression.


Assuntos
Células Clonais/patologia , Análise Mutacional de DNA , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Análise de Célula Única , Separação Celular , Células Clonais/metabolismo , Humanos , Imunofenotipagem
13.
Am J Hematol ; 94(1): 111-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30370956

RESUMO

To improve the outcome of relapsed/refractory acute myeloid leukemia (AML), a randomized phase II trial of three novel regimens was conducted. Ninety patients were enrolled and were in first relapse or were refractory to induction/re-induction chemotherapy. They were randomized to the following regimens: carboplatin-topotecan (CT), each by continuous infusion for 5 days; alvocidib (formerly flavopiridol), cytarabine, and mitoxantrone (FLAM) in a timed sequential regimen; or sirolimus combined with mitoxantrone, etoposide, and cytarabine (S-MEC). The primary objective was attainment of a complete remission (CR). A Simon two-stage design was used for each of the three arms. The median age of the patients in the FLAM arm was older at 62 years compared with 55 years for the CT arm and the S-MEC arm. The overall response was 14% in the CT arm (5/35, 90% CI 7%-35%), 28% in the FLAM arm (10/36, 90% CI, 16%-43%), and 16% in the S-MEC arm (3/19, 90% CI, 4%-36%). There were nine treatment-related deaths, seven of which occurred in the FLAM arm with four of these in elderly patients. We conclude that the FLAM regimen had an encouraging response rate and should be considered for further clinical development but should be used with caution in elderly patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia de Salvação , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carboplatina/administração & dosagem , Carboplatina/efeitos adversos , Citarabina/administração & dosagem , Citarabina/efeitos adversos , Intervalo Livre de Doença , Etoposídeo/administração & dosagem , Etoposídeo/efeitos adversos , Feminino , Flavonoides/administração & dosagem , Flavonoides/efeitos adversos , Seguimentos , Gastroenteropatias/induzido quimicamente , Doenças Hematológicas/induzido quimicamente , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Mitoxantrona/administração & dosagem , Mitoxantrona/efeitos adversos , Piperidinas/administração & dosagem , Piperidinas/efeitos adversos , Recidiva , Indução de Remissão , Terapia de Salvação/efeitos adversos , Sirolimo/administração & dosagem , Sirolimo/efeitos adversos , Topotecan/administração & dosagem , Topotecan/efeitos adversos , Síndrome de Lise Tumoral/etiologia
14.
Oncogene ; 38(13): 2241-2262, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30478448

RESUMO

The poor outcomes in infant acute lymphoblastic leukemia (ALL) necessitate new treatments. Here we discover that EIF4E protein is elevated in most cases of infant ALL and test EIF4E targeting by the repurposed antiviral agent ribavirin, which has anticancer properties through EIF4E inhibition, as a potential treatment. We find that ribavirin treatment of actively dividing infant ALL cells on bone marrow stromal cells (BMSCs) at clinically achievable concentrations causes robust proliferation inhibition in proportion with EIF4E expression. Further, we find that ribavirin treatment of KMT2A-rearranged (KMT2A-R) infant ALL cells and the KMT2A-AFF1 cell line RS4:11 inhibits EIF4E, leading to decreases in oncogenic EIF4E-regulated cell growth and survival proteins. In ribavirin-sensitive KMT2A-R infant ALL cells and RS4:11 cells, EIF4E-regulated proteins with reduced levels of expression following ribavirin treatment include MYC, MCL1, NBN, BCL2 and BIRC5. Ribavirin-treated RS4:11 cells exhibit impaired EIF4E-dependent nuclear to cytoplasmic export and/or translation of the corresponding mRNAs, as well as reduced phosphorylation of the p-AKT1, p-EIF4EBP1, p-RPS6 and p-EIF4E signaling proteins. This leads to an S-phase cell cycle arrest in RS4:11 cells corresponding to the decreased proliferation. Ribavirin causes nuclear EIF4E to re-localize to the cytoplasm in KMT2A-AFF1 infant ALL and RS4:11 cells, providing further evidence for EIF4E inhibition. Ribavirin slows increases in peripheral blasts in KMT2A-R infant ALL xenograft-bearing mice. Ribavirin cooperates with chemotherapy, particularly L-asparaginase, in reducing live KMT2A-AFF1 infant ALL cells in BMSC co-cultures. This work establishes that EIF4E is broadly elevated across infant ALL and that clinically relevant ribavirin exposures have preclinical activity and effectively inhibit EIF4E in KMT2A-R cases, suggesting promise in EIF4E targeting using ribavirin as a means of treatment.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Terapia de Alvo Molecular/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Ribavirina/uso terapêutico , Linhagem Celular Tumoral , Pré-Escolar , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Iniciação 4E em Eucariotos/fisiologia , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis , Lactente , Análise em Microsséries , Família Multigênica/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Biossíntese de Proteínas/efeitos dos fármacos , Pirróis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
15.
JCI Insight ; 3(8)2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29669947

RESUMO

BACKGROUND: Multiple myeloma is usually fatal due to serial relapses that become progressively refractory to therapy. CD19 is typically absent on the dominant multiple myeloma cell population but may be present on minor subsets with unique myeloma-propagating properties. To target myeloma-propagating cells, we clinically evaluated autologous T cells transduced with a chimeric antigen receptor (CAR) against CD19 (CTL019). METHODS: Subjects received CTL019 following salvage high-dose melphalan and autologous stem cell transplantation (ASCT). All subjects had relapsed/refractory multiple myeloma and had previously undergone ASCT with less than 1 year progression-free survival (PFS). RESULTS: ASCT + CTL019 was safe and feasible, with most toxicity attributable to ASCT and no severe cytokine release syndrome. Two of 10 subjects exhibited significantly longer PFS after ASCT + CTL019 compared with prior ASCT (479 vs. 181 days; 249 vs. 127 days). Correlates of favorable clinical outcome included peak CTL019 frequency in bone marrow and emergence of humoral and cellular immune responses against the stem-cell antigen Sox2. Ex vivo treatment of primary myeloma samples with a combination of CTL019 and CAR T cells against the plasma cell antigen BCMA reliably inhibited myeloma colony formation in vitro, whereas treatment with either CAR alone inhibited colony formation inconsistently. CONCLUSION: CTL019 may improve duration of response to standard multiple myeloma therapies by targeting and precipitating secondary immune responses against myeloma-propagating cells. TRIAL REGISTRATION: Clinicaltrials.gov identifier NCT02135406. FUNDING: Novartis, NIH, Conquer Cancer Foundation.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva/métodos , Melfalan/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/uso terapêutico , Idoso , Antígeno de Maturação de Linfócitos B/imunologia , Terapia Combinada/métodos , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Imunidade Celular/efeitos dos fármacos , Masculino , Melfalan/administração & dosagem , Pessoa de Meia-Idade , Mieloma Múltiplo/imunologia , Agonistas Mieloablativos/uso terapêutico , Receptores de Antígenos de Linfócitos T/administração & dosagem , Receptores de Antígenos de Linfócitos T/imunologia , Fatores de Transcrição SOXB1/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Transplante Autólogo , Resultado do Tratamento
16.
Blood ; 116(15): 2676-83, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20616221

RESUMO

Retroviral overexpression of NF-Ya, the regulatory subunit of the transcription factor NF-Y, activates the transcription of multiple genes implicated in hematopoietic stem cell (HSC) self-renewal and differentiation and directs HSCs toward self-renewal. We asked whether TAT-NF-Ya fusion protein could be used to transduce human CD34(+) cells as a safer, more regulated alternative approach to gene therapy. Here we show that externally added recombinant protein was able to enter the cell nucleus and activate HOXB4, a target gene of NF-Ya, using real-time polymerase chain reaction RNA and luciferase-based protein assays. After TAT-NF-Ya transduction, the proliferation of human CD34(+) cells in the presence of myeloid cytokines was increased 4-fold. Moreover, TAT-NF-Ya-treated human primary bone marrow cells showed a 4-fold increase in the percentage of huCD45(+) cells recovered from the bone marrow of sublethally irradiated, transplanted NOD-Scid IL2Rγ(null) mice. These data demonstrate that TAT-peptide therapies are an alternative approach to retroviral stem cell therapies and suggest that NF-Ya peptide delivery should be further evaluated as a tool for HSC/progenitors ex vivo expansion and therapy.


Assuntos
Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Transdução Genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Proliferação de Células , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Proteínas de Homeodomínio/genética , Humanos , Técnicas In Vitro , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional , Transplante Heterólogo
17.
Blood ; 100(4): 1438-48, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12149229

RESUMO

The ets transcription factor, TEL, undergoes chromosomal rearrangements with the tyrosine kinase JAK2. TEL-JAK2 is constitutively active, confers cell line factor independence, and activates signal transducer and activator of transcription-1 (STAT1), STAT3, and STAT5. Data from bone marrow transplantation models suggest that STAT5 activation does not account for the entire disease phenotype induced by TEL-JAK2. This study examined additional signaling pathways that are activated by TEL-JAK2. TEL-JAK2 expression in Ba/F3 cells results in constitutive association and tyrosine phosphorylation of Shc and Ship-1 and, consequently, recruitment of Grb2 to TEL-JAK2. Direct Grb2 recruitment is also possible because a putative Grb2 binding site, Tyr314, is present on TEL-JAK2(5-19) and TEL-JAK2(5-12). Studies with a TEL-JAK2(5-19)Tyr314Phe mutant support a role for Tyr314 in Grb2 recruitment, because Grb2 association with TEL-JAK2(5-19)Tyr314Phe is significantly reduced. Interestingly, TEL-JAK2(5-19)Tyr314Phe shows reduced Ras activation when compared with TEL-JAK2(4-17), TEL-JAK2(5-12), and TEL-JAK2(5-19). Analysis of extracellular signal-regulated kinase-1/2 (ERK1/2), stress-activated protein/Jun kinase (SAPK/JNK), and p38 demonstrates the activation of SAPK/JNK and phosphorylation of p38 by all TEL-JAK2 isoforms. TEL-JAK2(5-12) and TEL-JAK2(5-19) preferentially phosphorylate ERK2, whereas TEL-JAK2(4-17) phosphorylated ERK2 at lower levels. Inhibition studies demonstrated that ERK1/2 activation was necessary for Ba/F3 factor independence mediated by TEL-JAK2(5-19), while inhibition of SAPK/JNK or p38 activity had no effect. Our data reveal the requirement of ERK activation by TEL-JAK2(5-19) in Ba/F3 cells and suggest that TEL-JAK2 leukemogenic potential may be mediated in part through ERK1/2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Fusão Oncogênica/fisiologia , Transdução de Sinais , Animais , Linhagem Celular , Ativação Enzimática , Proteína Adaptadora GRB2 , Camundongos , Proteína Quinase 8 Ativada por Mitógeno , Mutação , Proteínas de Fusão Oncogênica/genética , Fenilalanina , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras da Sinalização Shc , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Tirosina , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA