Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Vis Exp ; (207)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829133

RESUMO

Patients with the autosomal dominant tumor susceptibility syndrome neurofibromatosis type 1 (NF1) commonly develop plexiform neurofibromas (PNs) that subsequently transform into highly aggressive malignant peripheral nerve sheath tumors (MPNSTs). Understanding the process by which a PN transforms into an MPNST would be facilitated by the availability of genetically engineered mouse (GEM) models that accurately replicate the PN-MPNST progression seen in humans with NF1. Unfortunately, GEM models with Nf1 ablation do not fully recapitulate this process. This led us to develop P0-GGFß3 mice, a GEM model in which overexpression of the Schwann cell mitogen neuregulin-1 (NRG1) in Schwann cells results in the development of PNs that progress to become MPNSTs with high frequency. However, to determine whether tumorigenesis and neoplastic progression in P0-GGFß3 mice accurately model the processes seen in NF1 patients, we had to first prove that the pathology of P0-GGFß3 peripheral nerve sheath tumors recapitulates the pathology of their human counterparts. Here, we describe the specialized methodologies used to accurately diagnose and grade peripheral nervous system neoplasms in GEM models, using P0-GGFß3 and P0-GGFß3;Trp53+/- mice as an example. We describe the histologic, immunohistochemical, and histochemical methods used to diagnose PNs and MPNSTs, how to distinguish these neoplasms from other tumor types that mimic their pathology, and how to grade these neoplasms. We discuss the establishment of early-passage cultures from GEM MPNSTs, how to characterize these cultures using immunocytochemistry, and how to verify their tumorigenicity by establishing allografts. Collectively, these techniques characterize the pathology of PNs and MPNSTs that arise in GEM models and critically compare the pathology of these murine tumors to their human counterparts.


Assuntos
Modelos Animais de Doenças , Neoplasias de Bainha Neural , Animais , Camundongos , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Gradação de Tumores , Humanos , Camundongos Transgênicos
2.
J Vis Exp ; (198)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37677047

RESUMO

Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are derived from Schwann cells or their precursors. In patients with the tumor susceptibility syndrome neurofibromatosis type 1 (NF1), MPNSTs are the most common malignancy and the leading cause of death. These rare and aggressive soft-tissue sarcomas offer a stark future, with 5-year disease-free survival rates of 34-60%. Treatment options for individuals with MPNSTs are disappointingly limited, with disfiguring surgery being the foremost treatment option. Many once-promising therapies such as tipifarnib, an inhibitor of Ras signaling, have failed clinically. Likewise, phase II clinical trials with erlotinib, which targets the epidermal growth factor (EFGR), and sorafenib, which targets the vascular endothelial growth factor receptor (VEGF), platelet-derived growth factor receptor (PDGF), and Raf, in combination with standard chemotherapy, have also failed to produce a response in patients. In recent years, functional genomic screening methods combined with genetic profiling of cancer cell lines have proven useful for identifying essential cytoplasmic signaling pathways and the development of target-specific therapies. In the case of rare tumor types, a variation of this approach known as cross-species comparative oncogenomics is increasingly being used to identify novel therapeutic targets. In cross-species comparative oncogenomics, genetic profiling and functional genomics are performed in genetically engineered mouse (GEM) models and the results are then validated in the rare human specimens and cell lines that are available. This paper describes how to identify candidate driver gene mutations in human and mouse MPNST cells using whole exome sequencing (WES). We then describe how to perform genome-scale shRNA screens to identify and compare critical signaling pathways in mouse and human MPNST cells and identify druggable targets in these pathways. These methodologies provide an effective approach to identifying new therapeutic targets in a variety of human cancer types.


Assuntos
Neurofibromatose 1 , Neurofibrossarcoma , Sarcoma , Humanos , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular , Fator de Crescimento Epidérmico , Modelos Animais de Doenças
3.
Am J Pathol ; 193(9): 1298-1318, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37328102

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, currently untreatable Schwann cell-derived neoplasms with hyperactive mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. To identify potential therapeutic targets, previous studies used genome-scale shRNA screens that implicated the neuregulin-1 receptor erb-B2 receptor tyrosine kinase 3 (erbB3) in MPNST proliferation and/or survival. The current study shows that erbB3 is commonly expressed in MPNSTs and MPNST cell lines and that erbB3 knockdown inhibits MPNST proliferation and survival. Kinomic and microarray analyses of Schwann and MPNST cells implicate Src- and erbB3-mediated calmodulin-regulated signaling as key pathways. Consistent with this, inhibition of upstream (canertinib, sapitinib, saracatinib, and calmodulin) and parallel (AZD1208) signaling pathways involving mitogen-activated protein kinase and mammalian target of rapamycin reduced MPNST proliferation and survival. ErbB inhibitors (canertinib and sapitinib) or erbB3 knockdown in combination with Src (saracatinib), calmodulin [trifluoperazine (TFP)], or proviral integration site of Moloney murine leukemia kinase (AZD1208) inhibition even more effectively reduces proliferation and survival. Drug inhibition enhances an unstudied calmodulin-dependent protein kinase IIα phosphorylation site in an Src-dependent manner. The Src family kinase inhibitor saracatinib reduces both basal and TFP-induced erbB3 and calmodulin-dependent protein kinase IIα phosphorylation. Src inhibition (saracatinib), like erbB3 knockdown, prevents these phosphorylation events; and when combined with TFP, it even more effectively reduces proliferation and survival compared with monotherapy. These findings implicate erbB3, calmodulin, proviral integration site of Moloney murine leukemia kinases, and Src family members as important therapeutic targets in MPNSTs and demonstrate that combinatorial therapies targeting critical MPNST signaling pathways are more effective.


Assuntos
Leucemia , Neoplasias de Bainha Neural , Neurofibrossarcoma , Humanos , Camundongos , Animais , Receptor ErbB-2/metabolismo , Receptor ErbB-2/uso terapêutico , Neoplasias de Bainha Neural/tratamento farmacológico , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/metabolismo , Calmodulina/metabolismo , Calmodulina/farmacologia , Calmodulina/uso terapêutico , Sirolimo/farmacologia , Proliferação de Células , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Mamíferos/metabolismo
4.
Glia ; 71(3): 742-757, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36416236

RESUMO

Schwann cell-derived neoplasms known as malignant peripheral nerve sheath tumors (MPNSTs) are the most common malignancy and the leading cause of death in individuals with neurofibromatosis Type 1. Using genome-scale shRNA screens, we have previously found evidence suggesting that lysophosphatidic acid receptors (LPARs) are essential for MPNST proliferation and/or survival. Here, we examine the expression and mutational status of all six LPA receptors in MPNSTs, assess the role that individual LPA receptors play in MPNST physiology and examine their ability to activate key neurofibromin-regulated signaling cascades. We found that human Schwann cells express LPAR1 and LPAR6, while MPNST cells express predominantly LPAR1 and LPAR3. Whole exome sequencing of 16 MPNST cell lines showed no evidence of mutations in any LPAR genes or ENPP2, a gene encoding a major LPA biosynthetic enzyme. Oleoyl-LPA, an LPA variant with an unsaturated side chain, promoted MPNST cell proliferation and migration. LPAR1 knockdown ablated the promigratory effect of LPA, while LPAR3 knockdown decreased proliferation. Inhibition of R-Ras signaling with a doxycycline-inducible dominant negative (DN) R-Ras mutant, which inhibits both R-Ras and R-Ras2, blocked LPA's promigratory effect. In contrast, DN R-Ras did not affect migration induced by neuregulin-1ß (NRG1ß), suggesting that LPA and NRG1ß promote MPNST migration via distinct pathways. LPA-induced migration was also inhibited by Y27632, an inhibitor of the ROCK1/2 kinases that mediate R-Ras effects in MPNSTs. Thus, LPAR1 and aberrantly expressed LPAR3 mediate distinct effects in MPNSTs. These receptors and the signaling pathways that they regulate are potentially useful therapeutic targets in MPNSTs.


Assuntos
Neoplasias de Bainha Neural , Neurofibrossarcoma , Receptores de Ácidos Lisofosfatídicos , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Neoplasias de Bainha Neural/terapia , Receptores de Ácidos Lisofosfatídicos/genética , Quinases Associadas a rho
5.
J Neurochem ; 161(5): 435-452, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523590

RESUMO

Neuregulins (NRGs) and their cognate neuronal receptor ERBB4, which is expressed in GABAergic and dopaminergic neurons, regulate numerous behaviors in rodents and have been identified as schizophrenia at-risk genes. ErbB4 transcripts are alternatively spliced to generate isoforms that either include (Cyt-1) or exclude (Cyt-2) exon 26, which encodes a cytoplasmic domain that imparts ErbB4 receptors the ability to signal via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. Although ErbB4 Cyt-1/2 isoforms have been studied in transfected cultured cells, their functions in vivo remain unknown. Here, we generated ErbB4-floxed (ErbB4-Cyt1fl/fl ) mice to investigate the effects of germline (constitutive) and conditional (acute) deletions of the Cyt-1 exon. Overall receptor mRNA levels remain unchanged in germline ErbB4 Cyt-1 knockouts (Cyt-1 KOs), with all transcripts encoding Cyt-2 variants. In contrast to mice lacking all ErbB4 receptor function, GABAergic interneuron migration and number are unaltered in Cyt-1 KOs. However, basal extracellular dopamine (DA) levels in the medial prefrontal cortex are increased in Cyt-1 heterozygotes. Despite these neurochemical changes, Cyt-1 heterozygous and homozygous mice do not manifest behavioral abnormalities previously reported to be altered in ErbB4 null mice. To address the possibility that Cyt-2 variants compensate for the lack of Cyt-1 during development, we microinjected an adeno-associated virus expressing Cre-recombinase (AAV-Cre) into the DA-rich ventral tegmental area of adult ErbB4-Cyt1fl/fl mice to acutely target exon 26. These conditional Cyt-1 KOs were found to exhibit behavioral abnormalities in the elevated plus maze and startle response, consistent with the idea that late exon 26 ablations may circumvent compensation by Cyt-2 variants. Taken together, our observations indicate that ErbB4 Cyt-1 function in vivo is important for DA balance and behaviors in adults.


Assuntos
Receptores ErbB , Fosfatidilinositol 3-Quinases , Receptor ErbB-4 , Animais , Dopamina , Receptores ErbB/genética , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo
6.
Adv Cancer Res ; 153: 305-341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101235

RESUMO

The RASopathies are a group of genetic diseases in which the Ras/MAPK signaling pathway is inappropriately activated as a result of mutations in genes encoding proteins within this pathway. As their causative mutations have been identified, this group of diseases has expanded to include neurofibromatosis type 1 (NF1), Legius syndrome, Noonan syndrome, CBL syndrome, Noonan syndrome-like disorder with loose anagen hair, Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, gingival fibromatosis and capillary malformation-arteriovenous malformation syndrome. Many of these genetic disorders share clinical features in common such as abnormal facies, short stature, varying degrees of cognitive impairment, cardiovascular abnormalities, skeletal abnormalities and a predisposition to develop benign and malignant neoplasms. Others are more dissimilar, even though their mutations are in the same gene that is mutated in a different RASopathy. Here, we describe the clinical features of each RASopathy and contrast them with the other RASopathies. We discuss the genetics of these disorders, including the causative mutations for each RASopathy, the impact that these mutations have on the function of an individual protein and how this dysregulates the Ras/MAPK signaling pathway. As several of these individual disorders are genetically heterogeneous, we also consider the different genes that can be mutated to produce disease with the same phenotype. We also discuss how our growing understanding of dysregulated Ras/MAPK signaling had led to the development of new therapeutic agents and what work will be critically important in the future to improve the lives of patients with RASopathies.


Assuntos
Neoplasias , Síndrome de Noonan , Biologia , Insuficiência de Crescimento/genética , Humanos , Mutação , Síndrome de Noonan/genética , Proteínas ras/genética , Proteínas ras/metabolismo
7.
Mol Ther ; 30(4): 1451-1464, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35038582

RESUMO

Brain pericytes regulate cerebral blood flow, maintain the integrity of the blood-brain barrier (BBB), and facilitate the removal of amyloid ß (Aß), which is critical to healthy brain activity. Pericyte loss has been observed in brains from patients with Alzheimer's disease (AD) and animal models. Our previous data demonstrated that friend leukemia virus integration 1 (Fli-1), an erythroblast transformation-specific (ETS) transcription factor, governs pericyte viability in murine sepsis; however, the role of Fli-1 and its impact on pericyte loss in AD remain unknown. Here, we demonstrated that Fli-1 expression was up-regulated in postmortem brains from a cohort of human AD donors and in 5xFAD mice, which corresponded with a decreased pericyte number, elevated inflammatory mediators, and increased Aß accumulation compared with cognitively normal individuals and wild-type (WT) mice. Antisense oligonucleotide Fli-1 Gapmer administered via intrahippocampal injection decelerated pericyte loss, decreased inflammatory response, ameliorated cognitive deficits, improved BBB dysfunction, and reduced Aß deposition in 5xFAD mice. Fli-1 Gapmer-mediated inhibition of Fli-1 protected against Aß accumulation-induced human brain pericyte apoptosis in vitro. Overall, these studies indicate that Fli-1 contributes to pericyte loss, inflammatory response, Aß deposition, vascular dysfunction, and cognitive decline, and suggest that inhibition of Fli-1 may represent novel therapeutic strategies for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Proteína Proto-Oncogênica c-fli-1/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Cognição , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Pericitos/metabolismo
8.
Cell Commun Signal ; 19(1): 95, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530870

RESUMO

BACKGROUND: Loss of the Ras GTPase-activating protein neurofibromin promotes nervous system tumor pathogenesis in patients with neurofibromatosis type 1 (NF1). Neurofibromin loss potentially hyperactivates classic Ras (H-Ras, N-Ras, K-Ras), M-Ras, and R-Ras (R-Ras, R-Ras2/TC21) subfamily proteins. We have shown that classic Ras proteins promote proliferation and survival, but not migration, in malignant peripheral nerve sheath tumor (MPNST) cells. However, it is unclear whether R-Ras, R-Ras2 and M-Ras are expressed and hyperactivated in MPNSTs and, if so, whether they contribute to MPNST pathogenesis. We assessed the expression and activation of these proteins in MPNST cells and inhibited them to determine the effect this had on proliferation, migration, invasion, survival and the phosphoproteome. METHODS: NF1-associated (ST88-14, 90-8, NMS2, NMS-PC, S462, T265-2c) and sporadic (STS-26T, YST-1) MPNST lines were used. Cells were transfected with doxycycline-inducible vectors expressing either a pan-inhibitor of the R-Ras subfamily [dominant negative (DN) R-Ras] or enhanced green fluorescent protein (eGFP). Methodologies used included immunoblotting, immunocytochemistry, PCR, Transwell migration, 3H-thymidine incorporation, calcein cleavage assays and shRNA knockdowns. Proteins in cells with or without DN R-Ras expression were differentially labeled with SILAC and mass spectrometry was used to identify phosphoproteins and determine their relative quantities in the presence and absence of DN R-Ras. Validation of R-Ras and R-Ras2 action and R-Ras regulated networks was performed using genetic and/or pharmacologic approaches. RESULTS: R-Ras2 was uniformly expressed in MPNST cells, with R-Ras present in a major subset. Both proteins were activated in neurofibromin-null MPNST cells. Consistent with classical Ras inhibition, DN R-Ras and R-Ras2 knockdown inhibited proliferation. However, DN R-Ras inhibition impaired migration and invasion but not survival. Mass spectrometry-based phosphoproteomics identified thirteen protein networks distinctly regulated by DN R-Ras, including multiple networks regulating cellular movement and morphology. ROCK1 was a prominent mediator in these networks. DN R-Ras expression and RRAS and RRAS2 knockdown inhibited migration and ROCK1 phosphorylation; ROCK1 inhibition similarly impaired migration and invasion, altered cellular morphology and triggered the accumulation of large intracellular vesicles. CONCLUSIONS: R-Ras proteins function distinctly from classic Ras proteins by regulating distinct signaling pathways that promote MPNST tumorigenesis by mediating migration and invasion. Mutations of the NF1 gene potentially results in the activation of multiple Ras proteins, which are key regulators of many biologic effects. The protein encoded by the NF1 gene, neurofibromin, acts as an inhibitor of both classic Ras and R-Ras proteins; loss of neurofibromin could cause these Ras proteins to become persistently active, leading to the development of cancer. We have previously shown that three related Ras proteins (the classic Ras proteins) are highly activated in malignant peripheral nerve sheath tumor (MPNST) cells with neurofibromin loss and that they drive cancer cell proliferation and survival by activating multiple cellular signaling pathways. Here, we examined the expression, activation and action of R-Ras proteins in MPNST cells that have lost neurofibromin. Both R-Ras and R-Ras2 are expressed in MPNST cells and activated. Inhibition of R-Ras action inhibited proliferation, migration and invasion but not survival. We examined the activation of cytoplasmic signaling pathways in the presence and absence of R-Ras signaling and found that R-Ras proteins regulated 13 signaling pathways distinct from those regulated by classic Ras proteins. Closer study of an R-Ras regulated pathway containing the signaling protein ROCK1 showed that inhibition of either R-Ras, R-Ras2 or ROCK1 similarly impaired cellular migration and invasion and altered cellular morphology. Inhibition of R-Ras/R-Ras2 and ROCK1 signaling also triggered the accumulation of abnormal intracellular vesicles, indicating that these signaling molecules regulate the movement of proteins and other molecules in the cellular interior. Video Abstract.


Assuntos
Proteínas de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Neurofibrossarcoma/genética , Proteínas ras/genética , Quinases Associadas a rho/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neurofibromatose 1/patologia , Neurofibrossarcoma/patologia , Fosfoproteínas/genética , Fosforilação/genética , Proteoma/genética , Transdução de Sinais/genética
9.
J Vis Exp ; (174)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34515675

RESUMO

The development of new drugs that precisely target key proteins in human cancers is fundamentally altering cancer therapeutics. However, before these drugs can be used, their target proteins must be validated as therapeutic targets in specific cancer types. This validation is often performed by knocking out the gene encoding the candidate therapeutic target in a genetically engineered mouse (GEM) model of cancer and determining what effect this has on tumor growth. Unfortunately, technical issues such as embryonic lethality in conventional knockouts and mosaicism in conditional knockouts often limit this approach. To overcome these limitations, an approach to ablating a floxed embryonic lethal gene of interest in short-term cultures of malignant peripheral nerve sheath tumors (MPNSTs) generated in a GEM model was developed. This paper describes how to establish a mouse model with the appropriate genotype, derive short-term tumor cultures from these animals, and then ablate the floxed embryonic lethal gene using an adenoviral vector that expresses Cre recombinase and enhanced green fluorescent protein (eGFP). Purification of cells transduced with adenovirus using fluorescence-activated cell sorting (FACS) and the quantification of the effects that gene ablation exerts on cellular proliferation, viability, the transcriptome, and orthotopic allograft growth is then detailed. These methodologies provide an effective and generalizable approach to identifying and validating therapeutic targets in vitro and in vivo. These approaches also provide a renewable source of low-passage tumor-derived cells with reduced in vitro growth artifacts. This allows the biological role of the targeted gene to be studied in diverse biologic processes such as migration, invasion, metastasis, and intercellular communication mediated by the secretome.


Assuntos
Neoplasias de Bainha Neural , Neurofibrossarcoma , Alelos , Animais , Proliferação de Células , Transformação Celular Neoplásica , Genes Letais , Camundongos
10.
Am J Pathol ; 191(9): 1499-1510, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111428

RESUMO

The contributions that the R-Ras subfamily [R-Ras, R-Ras2/teratocarcinoma 21 (TC21), and M-Ras] of small GTP-binding proteins make to normal and aberrant cellular functions have historically been poorly understood. However, this has begun to change with the realization that all three R-Ras subfamily members are occasionally mutated in Noonan syndrome (NS), a RASopathy characterized by the development of hematopoietic neoplasms and abnormalities affecting the immune, cardiovascular, and nervous systems. Consistent with the abnormalities seen in NS, a host of new studies have implicated R-Ras proteins in physiological and pathologic changes in cellular morphology, adhesion, and migration in the cardiovascular, immune, and nervous systems. These changes include regulating the migration and homing of mature and immature immune cells, vascular stabilization, clotting, and axonal and dendritic outgrowth during nervous system development. Dysregulated R-Ras signaling has also been linked to the pathogenesis of cardiovascular disease, intellectual disabilities, and human cancers. This review discusses the structure and regulation of R-Ras proteins and our current understanding of the signaling pathways that they regulate. It explores the phenotype of NS patients and their implications for the R-Ras subfamily functions. Next, it covers recent discoveries regarding physiological and pathologic R-Ras functions in key organ systems. Finally, it discusses how R-Ras signaling is dysregulated in cancers and mechanisms by which this may promote neoplasia.


Assuntos
Movimento Celular/fisiologia , Transdução de Sinais/fisiologia , Proteínas ras/metabolismo , Animais , Humanos , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo
11.
Sci Rep ; 11(1): 5690, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707600

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive Schwann cell-derived neoplasms that occur sporadically or in patients with neurofibromatosis type 1 (NF1). Preclinical research on sporadic MPNSTs has been limited as few cell lines exist. We generated and characterized a new sporadic MPNST cell line, 2XSB, which shares the molecular and genomic features of the parent tumor. These cells have a highly complex karyotype with extensive chromothripsis. 2XSB cells show robust invasive 3-dimensional and clonogenic culture capability and form solid tumors when xenografted into immunodeficient mice. High-density single nucleotide polymorphism array and whole exome sequencing analyses indicate that, unlike NF1-associated MPNSTs, 2XSB cells have intact, functional NF1 alleles with no evidence of mutations in genes encoding components of Polycomb Repressor Complex 2. However, mutations in other genes implicated in MPNST pathogenesis were identified in 2XSB cells including homozygous deletion of CDKN2A and mutations in TP53 and PTEN. We also identified mutations in genes not previously associated with MPNSTs but associated with the pathogenesis of other human cancers. These include DNMT1, NUMA1, NTRK1, PDE11A, CSMD3, LRP5 and ACTL9. This sporadic MPNST-derived cell line provides a useful tool for investigating the biology and potential treatment regimens for sporadic MPNSTs.


Assuntos
Genoma Humano , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Sequências Repetitivas de Ácido Nucleico , Linhagem Celular Tumoral , Proliferação de Células , Dosagem de Genes , Genes Neoplásicos , Humanos , Cariotipagem , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Sequências Repetitivas de Ácido Nucleico/genética , Sequenciamento do Exoma
12.
Drug Deliv ; 27(1): 1729-1740, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33307843

RESUMO

Chemoembolization for hepatocellular carcinoma (HCC) is often suboptimal due to multiple involved signaling and lack of effective drugs. Arsenic trioxide (ATO) is a potent chemotherapeutic agent, which can target multiple signaling and have substantial efficacy on HCC. However, its usage is limited due to systemic toxicity. Using ATO-eluting beads/microspheres for chemoembolization can have locoregional drug delivery and avoid systemic exposure but will require high drug load, which has not been achieved due to low solubility of ATO. Through an innovative approach, we generated the transiently formed ATO microcrystals via micronization and stabilized these microcrystals by solvent exchange. By encapsulating ATO microcrystals, but not individual molecules, with poly(lactide-co-glycolic acid) (PLGA), we developed microspheres cored with extremely high dense ATO. The molar ratio between ATO and PLGA was 157.4:1 and drug load was 40.1%, which is 4-20 fold higher than that of reported ATO nano/microparticles. These microspheres sustainably induced reactive oxygen species, apoptosis, and cytotoxicity on HCC cells and reduced tumor growth by 80% via locoregional delivery. Chemoembolization on mice model showed that ATO-microcrystal loaded microspheres, but not ATO, inhibited HCC growth by 60-75%, which indicates ATO within these microspheres gains the chemoembolizing function via our innovative approach.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Trióxido de Arsênio/administração & dosagem , Trióxido de Arsênio/uso terapêutico , Quimioembolização Terapêutica/métodos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Camundongos Nus , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espécies Reativas de Oxigênio , Solventes , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Neurooncol Adv ; 2(Suppl 1): i117-i123, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32642737

RESUMO

BACKGROUND: Cutaneous neurofibromas (cNFs) are the most common tumors in people with neurofibromatosis type 1 (NF1) and are associated with reduced quality of life. There is currently no widely accepted standardized language for describing cNFs clinically or histopathologically. The objective of this study was to evaluate interobserver agreement across pathologists in describing and reporting of neurofibromas involving the skin. METHODS: Twenty-eight (H&E)-stained slides of cNF were scanned using an Aperio XT scanner. The digital images were reviewed by 6 pathologists, who entered free text of up to a 200 word description for each case into a REDcap database. Responses were analyzed for the most commonly used terms based on frequency, as well as agreement (reported as concordance) between reviewers. RESULTS: A set of the terms most commonly used by pathologists for the histological classification of cNF along with areas of agreement and disagreement have been identified. The study shows that there was strong agreement across reviewers that not all neurofibromas involving the skin are cutaneous neurofibromas and regarding the presence or absence of atypical features and heterologous elements. Areas of less concordance were identified and include cNF subtypes, definition of extension and pattern of growth, as well as the distinction of a cNF from a plexiform without an intraneural component involving skin. CONCLUSIONS: This work is the first step towards development of a robust classification system and devising "gold standard" histopathologic diagnostic criteria for cutaneous neurofibromas.

15.
Am J Pathol ; 189(10): 1898-1912, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351986

RESUMO

It is well established that the epidermal growth factor (EGF) receptor, receptor tyrosine-protein kinase erbB-2 (ERBB2)/human EGF receptor 2 (HER2), and, to a lesser extent, ERBB4/HER4, promote the pathogenesis of many types of human cancers. In contrast, the role that ERBB3/HER3, the fourth member of the ERBB family of receptor tyrosine kinases, plays in these diseases is poorly understood and, until recently, underappreciated. In large part, this was because early structural and functional studies suggested that ERBB3 had little, if any, intrinsic tyrosine kinase activity and, thus, was unlikely to be an important therapeutic target. Since then, however, numerous publications have demonstrated an important role for ERBB3 in carcinogenesis, metastasis, and acquired drug resistance. Furthermore, somatic ERBB3 mutations are frequently encountered in many types of human cancers. Dysregulation of ERBB3 trafficking as well as cooperation with other receptor tyrosine kinases further enhance ERBB3's role in tumorigenesis and drug resistance. As a result of these advances in our understanding of the structure and biochemistry of ERBB3, and a growing focus on the development of precision and combinatorial therapeutic regimens, ERBB3 is increasingly considered to be an important therapeutic target in human cancers. In this review, we discuss the unique structural and functional features of ERBB3 and how this information is being used to develop effective new therapeutic agents that target ERBB3 in human cancers.


Assuntos
Carcinogênese/patologia , Neoplasias/patologia , Receptor ErbB-3/metabolismo , Carcinogênese/metabolismo , Humanos , Neoplasias/metabolismo , Fosforilação , Transdução de Sinais
16.
Cell Commun Signal ; 17(1): 74, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291965

RESUMO

BACKGROUND: We have found that erbB receptor tyrosine kinases drive Ras hyperactivation and growth in NF1-null malignant peripheral nerve sheath tumors (MPNSTs). However, MPNSTs variably express multiple erbB receptors with distinct functional characteristics and it is not clear which of these receptors drive MPNST pathogenesis. Here, we test the hypothesis that altered erbB4 expression promotes MPNST pathogenesis by uniquely activating key cytoplasmic signaling cascades. METHODS: ErbB4 expression was assessed using immunohistochemistry, immunocytochemistry, immunoblotting and real-time PCR. To define erbB4 functions, we generated mice that develop MPNSTs with floxed Erbb4 alleles (P0-GGFß3;Trp53+/-;Erbb4flox/flox mice) and ablated Erbb4 in these tumors. MPNST cell proliferation and survival was assessed using 3H-thymidine incorporation, MTT assays, Real-Time Glo and cell count assays. Control and Erbb4-null MPNST cells were orthotopically xenografted in immunodeficient mice and the growth, proliferation (Ki67 labeling), apoptosis (TUNEL labeling) and angiogenesis of these grafts was analyzed. Antibody arrays querying cytoplasmic kinases were used to identify erbB4-responsive kinases. Pharmacologic or genetic inhibition was used to identify erbB4-responsive kinases that drive proliferation. RESULTS: Aberrant erbB4 expression was evident in 25/30 surgically resected human MPNSTs and in MPNSTs from genetically engineered mouse models (P0-GGFß3 and P0-GGFß3;Trp53+/- mice); multiple erbB4 splice variants that differ in their ability to activate PI3 kinase and nuclear signaling were present in MPNST-derived cell lines. Erbb4-null MPNST cells demonstrated decreased proliferation and survival and altered morphology relative to non-ablated controls. Orthotopic allografts of Erbb4-null cells were significantly smaller than controls, with reduced proliferation, survival and vascularization. ERBB4 knockdown in human MPNST cells similarly inhibited DNA synthesis and viability. Although we have previously shown that broad-spectrum erbB inhibitors inhibit Ras activation, Erbb4 ablation did not affect Ras activation, suggesting that erbB4 drives neoplasia via non-Ras dependent pathways. An analysis of 43 candidate kinases identified multiple NRG1ß-responsive and erbB4-dependent signaling cascades including the PI3K, WNK1, STAT3, STAT5 and phospholipase-Cγ pathways. Although WNK1 inhibition did not alter proliferation, inhibition of STAT3, STAT5 and phospholipase-Cγ markedly reduced proliferation. CONCLUSIONS: ErbB4 promotes MPNST growth by activating key non-Ras dependent signaling cascades including the STAT3, STAT5 and phospholipase-Cγ pathways. ErbB4 and its effector pathways are thus potentially useful therapeutic targets in MPNSTs.


Assuntos
Neoplasias de Bainha Neural/patologia , Receptor ErbB-4/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fosfolipase C gama/metabolismo , Fosforilação , Receptor ErbB-4/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo
17.
PLoS One ; 14(5): e0216527, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31107888

RESUMO

In addition to large plexiform neurofibromas (pNF), NF1 patients are frequently disfigured by cutaneous neurofibromas (cNF) and are often afflicted with chronic pain and itch even from seemingly normal skin areas. Both pNFs and cNF consist primarily of benign hyperproliferating nonmyelinating Schwann cells (nSC). While pNF clearly arise within deep nerves and plexuses, the role of cutaneous innervation in the origin of cNF and in chronic itch and pain is unknown. First, we conducted a comprehensive, multi-molecular, immunofluorescence (IF) analyses on 3mm punch biopsies from three separate locations in normal appearing, cNF-free skin in 19 NF1 patients and skin of 16 normal subjects. At least one biopsy in 17 NF1 patients had previously undescribed micro-lesions consisting of a small, dense cluster of nonpeptidergic C-fiber endings and the affiliated nSC consistently adjoining adnexal structures-dermal papillae, hair follicles, sweat glands, sweat ducts, and arterioles-where C-fiber endings normally terminate. Similar micro-lesions were detected in hind paw skin of mice with conditionally-induced SC Nf1-/- mutations. Hypothesizing that these microlesions were pre-cNF origins of cNF, we subsequently analyzed numerous overt, small cNF (s-cNF, 3-6 mm) and discovered that each had an adnexal structure at the epicenter of vastly increased nonpeptidergic C-fiber terminals, accompanied by excessive nSC. The IF and functional genomics assays indicated that neurturin (NTRN) and artemin (ARTN) signaling through cRET kinase and GFRα2 and GFRα3 co-receptors on the aberrant C-fiber endings and nSC may mutually promote the onset of pre-cNF and their evolution to s-cNF. Moreover, TrpA1 and TrpV1 receptors may, respectively, mediate symptoms of chronic itch and pain. These newly discovered molecular characteristics might be targeted to suppress the development of cNF and to treat chronic itch and pain symptoms in NF1 patients.


Assuntos
Fibras Nervosas Amielínicas/metabolismo , Neurofibroma Plexiforme/patologia , Neurofibromatose 1/patologia , Células de Schwann/metabolismo , Neoplasias Cutâneas/patologia , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas Amielínicas/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurofibroma Plexiforme/metabolismo , Neurofibromatose 1/imunologia , Neurturina/metabolismo , Células de Schwann/patologia , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Adulto Jovem
18.
J Neuropathol Exp Neurol ; 78(4): 365-372, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30856249

RESUMO

Focal cortical dysplasia (FCD) is a common histopathologic finding in cortical specimens resected for refractory epilepsy. GABAergic neuronal abnormalities and K-Cl cotransporter type 2 (KCC2) immaturity may be contributing factors for FCD-related epilepsy. We examined surgical specimens from 12 cases diagnosed with FCD, and brain tissues without developmental abnormality obtained from 6 autopsy cases. We found that GABAergic neuronal density was abnormal in FCD with 2 distinct patterns. In 7 of 12 (58%) FCD subjects, the GABAergic neuron density in dysplastic regions and in neighboring nondysplastic regions was equally reduced, hence we call this a "broad pattern." In the remaining cases, GABAergic neuron density was decreased in dysplastic regions but not in the neighboring nondysplastic regions; we designate this "restricted pattern." The different patterns are not associated with pathologic subtypes of FCD. Intracytoplasmic retention of KCC2 is evident in dysmorphic neurons in the majority of FCD type II subjects (5/7) but not in FCD type I. Our study suggests that (1) "broad" GABAergic deficiency may reflect epileptic vulnerability outside the dysplastic area; and (2) abnormal distribution of KCC2 may contribute to seizure generation in patients with FCD type II but not in type I.


Assuntos
Epilepsia/patologia , Neurônios GABAérgicos/patologia , Malformações do Desenvolvimento Cortical do Grupo I/patologia , Simportadores/metabolismo , Adolescente , Adulto , Idoso , Pré-Escolar , Epilepsia/metabolismo , Feminino , Neurônios GABAérgicos/metabolismo , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
19.
Neurology ; 91(2 Suppl 1): S5-S13, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29987130

RESUMO

OBJECTIVE: To present the current terminology and natural history of neurofibromatosis 1 (NF1) cutaneous neurofibromas (cNF). METHODS: NF1 experts from various research and clinical backgrounds reviewed the terms currently in use for cNF as well as the clinical, histologic, and radiographic features of these tumors using published and unpublished data. RESULTS: Neurofibromas develop within nerves, soft tissue, and skin. The primary distinction between cNF and other neurofibromas is that cNF are limited to the skin whereas other neurofibromas may involve the skin, but are not limited to the skin. There are important cellular, molecular, histologic, and clinical features of cNF. Each of these factors is discussed in consideration of a clinicopathologic framework for cNF. CONCLUSION: The development of effective therapies for cNF requires formulation of diagnostic criteria that encompass the clinical and histologic features of these tumors. However, there are several areas of overlap between cNF and other neurofibromas that make distinctions between cutaneous and other neurofibromas more difficult, requiring careful deliberation with input across the multiple disciplines that encounter these tumors and ultimately, prospective validation. The ultimate goal of this work is to facilitate accurate diagnosis and meaningful therapeutics for cNF.


Assuntos
Neurofibroma/diagnóstico , Neurofibroma/patologia , Neurofibromatose 1/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Humanos , Neurofibroma/classificação , Neurofibroma/complicações , Neurofibromatose 1/complicações , Qualidade de Vida , Neoplasias Cutâneas/classificação , Neoplasias Cutâneas/complicações
20.
Oncotarget ; 9(35): 23878-23889, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29844859

RESUMO

Aberrant activation of phosphatidylinosito-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) signaling in cancer has led to pursuit of inhibitors for targeting this pathway. However, inhibitors of PI3K and AKT have failed to yield efficacious results without adverse effects. Here, we screened a library containing 441 authenticated traditional chinese medicine (TCM) plant extracts by examining their effect on cell viability of a human mammary epithelial cell line HMEC-PIK3CAH1047R, which expresses mutant PIK3CAH1047R and has constitutively active AKT signaling. We found that Oridonin, an extract from Rabdosia rubescens, reduced cell viability to the greatest extent. Oridonin binds to AKT1 and potentially functions as an ATP-competitive AKT inhibitor. Importantly, Oridonin selectively impaired tumor growth of human breast cancer cells with hyperactivation of PI3K/AKT signaling. Moreover, Oridonin prevented the initiation of mouse mammary tumors driven by PIK3CAH1047R. Our results suggest that Oridonin may serve as a potent and durable therapeutic agent for the treatment of breast cancers with hyperactivation of PI3K/AKT signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA