Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
ACS Chem Biol ; 17(4): 957-968, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35353497

RESUMO

Immunotherapy has become a powerful clinical strategy for treating infectious diseases and cancer. Synthetic small-molecule toll-like receptor 7 (TLR7) ligands are attractive candidates as immunostimulatory agents for immunotherapy. TLR7 is mainly localized in intracellular endosomal compartments so that the formulation of their small-molecule ligands with macromolecules enhances endocytic uptake of TLR7 ligands and improves the pharmaceutical properties. Previously, we demonstrated that gold nanoparticles co-immobilized with a TLR7 ligand derivative, that is, a conjugate of synthetic small-molecule TLR7 ligand (1V209) and thioctic acid (TA) via 4,7,10-trioxa-1,13-tridecanediamine, and α-mannose (1V209-αMan-GNPs: glyco-nanoadjuvants) significantly enhances immunostimulatory effects. In the present study, we designed a second-generation glyco-nanoadjuvant that possesses a poly(ethylene glycol) (PEG) chain as a spacer between 1V209 and GNPs and investigated the impact of linker length in 1V209 derivatives on the immunostimulatory activities. We used different chain lengths of PEG (n = 3, 5, 11, or 23) as spacers between 1V209 and thioctic acid to prepare four 1V209-αMan-GNPs. In the in vitro study using primary mouse bone-marrow-derived dendritic cells, 1V209-αMan-GNPs that immobilized with longer 1V209 derivatives, especially the 1V209 derivative possessing PEG23 (1V209-PEG23-TA), showed the highest potency toward induction both for interleukin-6 and type I interferon production than those derivatives with shorter PEG chains. Furthermore, 1V209-αMan-GNPs that immobilized with 1V209-PEG23-TA showed significantly higher adjuvant effects for inducing both humoral and cell-mediated immune responses against ovalbumin in the in vivo immunization study. These results indicate that the linker length for immobilizing small-molecule TLR7 ligand on the GNPs significantly affects the adjuvant activity of 1V209-αMan-GNPs and that 1V209-αMan-GNPs immobilized with 1V209-PEG-23-TA could be superior adjuvants for immunotherapies.


Assuntos
Nanopartículas Metálicas , Ácido Tióctico , Adjuvantes Imunológicos/farmacologia , Animais , Ouro , Imunização , Ligantes , Camundongos , Receptor 7 Toll-Like
2.
Mol Cancer Ther ; 21(1): 113-124, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667113

RESUMO

Although WNT signaling is frequently dysregulated in solid tumors, drugging this pathway has been challenging due to off-tumor effects. Current clinical pan-WNT inhibitors are nonspecific and lead to adverse effects, highlighting the urgent need for more specific WNT pathway-targeting strategies. We identified elevated expression of the WNT receptor Frizzled class receptor 7 (FZD7) in multiple solid cancers in The Cancer Genome Atlas, particularly in the mesenchymal and proliferative subtypes of ovarian serous cystadenocarcinoma, which correlate with poorer median patient survival. Moreover, we observed increased FZD7 protein expression in ovarian tumors compared with normal ovarian tissue, indicating that FZD7 may be a tumor-specific antigen. We therefore developed a novel antibody-drug conjugate, septuximab vedotin (F7-ADC), which is composed of a chimeric human-mouse antibody to human FZD7 conjugated to the microtubule-inhibiting drug monomethyl auristatin E (MMAE). F7-ADC selectively binds human FZD7, potently kills ovarian cancer cells in vitro, and induces regression of ovarian tumor xenografts in murine models. To evaluate F7-ADC toxicity in vivo, we generated mice harboring a modified Fzd7 gene where the resulting Fzd7 protein is reactive with the human-targeting F7-ADC. F7-ADC treatment of these mice did not induce acute toxicities, indicating a potentially favorable safety profile in patients. Overall, our data suggest that the antibody-drug conjugate approach may be a powerful strategy to combat FZD7-expressing ovarian cancers in the clinic.


Assuntos
Receptores Frizzled/genética , Imunoconjugados/metabolismo , Neoplasias Ovarianas/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia
3.
Front Pharmacol ; 12: 668609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935791

RESUMO

Extracellular vesicles (EVs) are identified as mediators of intercellular communication and cellular regulation. In the immune system, EVs play a role in antigen presentation as a part of cellular communication. To enable drug discovery and characterization of compounds that affect EV biogenesis, function, and release in immune cells, we developed and characterized a reporter cell line that allows the quantitation of EVs shed into culture media in phenotypic high-throughput screen (HTS) format. Tetraspanins CD63 and CD9 were previously reported to be enriched in EVs; hence, a construct with dual reporters consisting of CD63-Turbo-luciferase (Tluc) and CD9-Emerald green fluorescent protein (EmGFP) was engineered. This construct was transduced into the human monocytic leukemia cell line, THP-1. Cells expressing the highest EmGFP were sorted by flow cytometry as single cell, and clonal pools were expanded under antibiotic selection pressure. After four passages, the green fluorescence dimmed, and EV biogenesis was then tracked by luciferase activity in culture supernatants. The Tluc activities of EVs shed from CD63Tluc-CD9EmGFP reporter cells in the culture supernatant positively correlated with the concentrations of released EVs measured by nanoparticle tracking analysis. To examine the potential for use in HTS, we first miniaturized the assay into a robotic 384-well plate format. A 2210 commercial compound library (Maybridge) was then screened twice on separate days, for the induction of extracellular luciferase activity. The screening data showed high reproducibility on days 1 and 2 (78.6%), a wide signal window, and an excellent Z' factor (average of 2-day screen, 0.54). One hundred eighty-seven compounds showed a response ratio that was 3SD above the negative controls in both day 1 and 2 screens and were considered as hit candidates (approximately 10%). Twenty-two out of 40 re-tested compounds were validated. These results indicate that the performance of CD63Tluc-CD9EmGFP reporter cells is reliable, reproducible, robust, and feasible for HTS of compounds that regulate EV release by the immune cells.

5.
Cancer Biol Med ; 17(1): 132-141, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296581

RESUMO

Objective: Cancer stem cell is one of the important causes of tumorigenesis as well as a drug target in the treatment of malignant tumor. However, at present, there is no immune vaccine targeting these cells. Octamer-binding transcription factor 4 (OCT4), a marker of embryonic stem cells and germ cells, often highly expresses in the early stages of tumorigenesis and is therefore a good candidate for cancer vaccine development. Methods: To identify the optimal carrier and adjuvant combination, we chemically synthesized and linked three different OCT4 epitope antigens to a carrier protein, keyhole limpet hemocyanin (KLH), combined with Toll-like receptor 9 agonist (TLR9). Results: Immunization with OCT4-3 + TLR9 produced the strongest immune response in mice. In prevention assays, significant tumor growth inhibition was achieved in BABL/c mice treated with OCT4-3 + TLR9 (P < 0.01). Importantly, the results showed that cytotoxic T lymphocyte activity and the inhibition of tumor growth were enhanced in mice immunized with OCT4-3 combined with TLR9. Meanwhile, multiple cytokines [such as interferon (IFN)-γ (P < 0.05), interleukin (IL)-12 (P < 0.05), IL-2 (P < 0.01), and IL-6 (P < 0.05)] promoting cellular immune responses were shown to be greatly enhanced in mice immunized with OCT4-3 + TLR9. Moreover, we considered safety considerations in terms of the composition of the vaccines to help facilitate the development of effective next-generation vaccines. Conclusions: Collectively, these experiments demonstrated that combination therapy with TLR9 agonist induced a tumor-specific adaptive immune response, leading to the suppression of primary tumor growth in testis embryonic carcinoma.


Assuntos
Vacinas Anticâncer/administração & dosagem , Neoplasias/terapia , Células-Tronco Neoplásicas/imunologia , Fator 3 de Transcrição de Octâmero/imunologia , Receptor Toll-Like 9/agonistas , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/genética , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/síntese química , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Epitopos/administração & dosagem , Epitopos/química , Epitopos/imunologia , Hemocianinas/administração & dosagem , Hemocianinas/genética , Hemocianinas/imunologia , Humanos , Imunogenicidade da Vacina , Masculino , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Fator 3 de Transcrição de Octâmero/genética , Peptídeos/síntese química , Peptídeos/genética , Peptídeos/imunologia , Receptor Toll-Like 9/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/química , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
6.
Adv Ther (Weinh) ; 3(6)2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33644299

RESUMO

Mono- or dual-checkpoint inhibitors for immunotherapy have changed the paradigm of cancer care; however, only a minority of patients responds to such treatment. Combining small molecule immuno-stimulators can improve treatment efficacy, but they are restricted by poor pharmacokinetics. In this study, TLR7 agonists conjugated onto silica nanoparticles showed extended drug localization after intratumoral injection. The nanoparticle-based TLR7 agonist increased immune stimulation by activating the TLR7 signaling pathway. When treating CT26 colon cancer, nanoparticle conjugated TLR7 agonists increased T cell infiltration into the tumors by > 4× and upregulated expression of the interferon γ gene compared to its unconjugated counterpart by ~2×. Toxicity assays established that the conjugated TLR7 agonist is a safe agent at the effective dose. When combined with checkpoint inhibitors that target programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), a 10-100× increase in immune cell migration was observed; furthermore, 100 mm3 tumors were treated and a 60% remission rate was observed including remission at contralateral non-injected tumors. The data show that nanoparticle based TLR7 agonists are safe and can potentiate the effectiveness of checkpoint inhibitors in immunotherapy resistant tumor models and promote a long-term specific memory immune function.

7.
Bioorg Med Chem Lett ; 30(3): 126840, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31864800

RESUMO

Toll-like receptors (TLRs) are a type of pattern recognition receptors (PRRs), which are activated by recognizing pathogen-associated molecular patterns (PAMPs). The activation of TLRs initiates innate immune responses and subsequently leads to adaptive immune responses. TLR agonists are effective immuomodulators in vaccine adjuvants for infectious diseases and cancer immunotherapy. In exploring hydrophilic small molecules of TLR7 ligands using the cell-targeted property of a vaccine adjuvant, we conjugated 1V209, a small TLR7 ligand molecule, with various low or middle molecular weight sugar molecules that work as carriers. The sugar-conjugated 1V209 derivatives showed increased water solubility and higher immunostimulatory activity in both mouse and human cells compared to unmodified 1V209. The improved immunostimulatory potency of sugar-conjugates was attenuated by an inhibitor of endocytic process, cytochalasin D, suggesting that conjugation of sugar moieties may enhance the uptake of TLR7 ligand into the endosomal compartment. Collectively our results support that sugar-conjugated TLR7 ligands are applicable to novel drugs for cancer and vaccine therapy.


Assuntos
Adjuvantes Imunológicos/síntese química , Ligantes , Monossacarídeos/química , Receptor 7 Toll-Like/agonistas , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , Dimerização , Humanos , Interleucina-6/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Células RAW 264.7 , Relação Estrutura-Atividade , Receptor 7 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Adv Healthc Mater ; 8(23): e1901105, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31664791

RESUMO

Amphiphilic diblock copolymers are prepared by ring opening metathesis polymerization, with one block containing hydrophobic Toll-like receptor 7 (TLR7) agonists and one block containing hydrophilic peptides as substrates for matrix metalloproteinases (MMPs). A fluorescent label is incorporated into the polymer chains for in vivo imaging. Upon dialysis against aqueous solution, polymers form 15 nm spherical micelles. Subsequent exposure to MMP-9 elicits a morphological change to yield immunostimulatory microscale assemblies. The intravenous (IV) administration of the formulation to mice bearing 4T1 breast cancer tumors results in nanoparticle accumulation in tumors, reduction in primary tumor growth, and inhibition of lung metastases, as compared to saline-treated animals. Mice administered the parent immunotherapeutic small molecule (1V209) experience significantly increased plasma levels of proinflammatory cytokines IL-6, IP-10, and MCP-1 at 2 h following IV administration, whereas the nanomaterial shows no increase over saline-treated controls. These data suggest that covalently packaging low molecular weight immunotherapeutics at high weight percent loadings in enzyme-responsive nanoparticles maintains drug efficacy while decreasing immunotoxicity, providing a platform for cancer immunotherapeutic delivery.


Assuntos
Metaloproteinases da Matriz/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , Polímeros/metabolismo , Administração Intravenosa , Animais , Células Cultivadas , Quimiocina CCL2/sangue , Quimiocina CXCL10/sangue , Feminino , Interleucina-6/sangue , Neoplasias Mamárias Experimentais/sangue , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Camundongos , Peso Molecular , Nanopartículas/uso terapêutico , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Polímeros/química , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo
9.
Bioconjug Chem ; 30(11): 2811-2821, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31560198

RESUMO

Adjuvants enhance the immune response during vaccination. Among FDA-approved adjuvants, aluminum salts are most commonly used in vaccines. Although aluminum salts enhance humoral immunity, they show a limited effect for cell-mediated immune responses. Thus, further development of adjuvants that induce T-cell-mediated immune response is needed. Toll-like receptors (TLRs) recognizing specific pathogen-associated molecular patterns activate innate immunity, which is crucial to shape adaptive immunity. Using TLR ligands as novel adjuvants in vaccines has therefore attracted substantial attention. Among them a small molecule TLR7 ligand, imiquimod, has been approved for clinical use, but its use is restricted to local administration due to unwanted adverse side effects when used systematically. Since TLR7 is mainly located in the endosomal compartment of immune cells, efficient transport of the ligand into the cells is important for improving the potency of the TLR7 ligand. In this study we examined gold nanoparticles (GNPs) immobilized with α-mannose as carriers for a TLR7 ligand to target immune cells. The small molecule synthetic TLR7 ligand, 2-methoxyethoxy-8-oxo-9-(4-carboxy benzyl)adenine (1V209), and α-mannose were coimmobilized via linker molecules consisting of thioctic acid on the GNP surface (1V209-αMan-GNPs). The in vitro cytokine production activity of 1V209-αMan-GNPs was higher than that of the unconjugated 1V209 derivative in mouse bone marrow-derived dendritic cells and in human peripheral blood mononuclear cells. In the in vivo immunization study, 1V209-αMan-GNPs induced significantly higher titers of IgG2c antibody specific to ovalbumin as an antigen than did unconjugated 1V209, and splenomegaly and weight loss were not observed. These results indicate that 1V209-αMan-GNPs could be useful as safe and effective adjuvants for development of vaccines against infectious diseases and cancer.


Assuntos
Adenina/análogos & derivados , Adjuvantes Imunológicos/farmacologia , Ouro/química , Manose/química , Nanopartículas Metálicas/administração & dosagem , Bibliotecas de Moléculas Pequenas/farmacologia , Esplenomegalia/prevenção & controle , Receptor 7 Toll-Like/agonistas , Adenina/química , Adenina/farmacologia , Adjuvantes Imunológicos/química , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Imunização , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ligantes , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Bibliotecas de Moléculas Pequenas/química , Esplenomegalia/imunologia , Esplenomegalia/patologia , Receptor 7 Toll-Like/imunologia
10.
Cancer Immunol Res ; 7(10): 1714-1726, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409607

RESUMO

Irreversible electroporation (IRE) is a nonthermal ablation technique that is used clinically in selected patients with locally advanced pancreatic cancer, but most patients develop recurrent distant metastatic disease. We hypothesize that IRE can induce an in situ vaccination effect by releasing tumor neoantigens in an inflammatory context. Using an immunocompetent mouse model, we demonstrated that IRE alone produced complete regression of subcutaneous tumors in approximately 20% to 30% of mice. IRE was not effective in immunodeficient mice. Mice with complete response to IRE demonstrated prophylactic immunity and remained tumor free when rechallenged with secondary tumors on the contralateral flank. CD8+ T cells from IRE-responsive mice were reactive against peptides representing model-inherent alloantigens and conferred protection against tumor challenge when adoptively transferred into immunocompromised, tumor-naïve mice. Combining IRE with intratumoral Toll-like receptor-7 (TLR7) agonist (1V270) and systemic anti-programmed death-1 receptor (PD)-1 checkpoint blockade resulted in improved treatment responses. This combination also resulted in elimination of untreated concomitant distant tumors (abscopal effects), an effect not seen with IRE alone. These results suggest that the systemic antitumor immune response triggered by IRE can be enhanced by stimulating the innate immune system with a TLR7 agonist and the adaptive immune system with anti-PD-1 checkpoint blockade simultaneously. Combinatorial approaches such as this may help overcome the immunosuppressive pancreatic cancer microenvironment.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Eletroporação/métodos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor 7 Toll-Like/agonistas , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Imunidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
ACS Appl Mater Interfaces ; 11(30): 26637-26647, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31276378

RESUMO

Stimulation of Toll-like receptors (TLRs) and/or NOD-like receptors on immune cells initiates and directs immune responses that are essential for vaccine adjuvants. The small-molecule TLR7 agonist, imiquimod, has been approved by the FDA as an immune response modifier but is limited to topical application due to its poor pharmacokinetics that causes undesired adverse effects. Nanoparticles are increasingly used with innate immune stimulators to mitigate side effects and enhance adjuvant efficacy. In this study, a potent small-molecule TLR7 agonist, 2-methoxyethoxy-8-oxo-9-(4-carboxybenzyl)adenine (1V209), was conjugated to hollow silica nanoshells (NS). Proinflammatory cytokine (IL-6, IL-12) release by mouse bone-marrow-derived dendritic cells and human peripheral blood mononuclear cells revealed that the potency of silica nanoshells-TLR7 conjugates (NS-TLR) depends on nanoshell size and ligand coating density. Silica nanoshells of 100 nm diameter coated with a minimum of ∼6000 1V209 ligands/particle displayed 3-fold higher potency with no observed cytotoxicity when compared to an unconjugated TLR7 agonist. NS-TLR activated the TLR7-signaling pathway, triggered caspase activity, and stimulated IL-1ß release, while neither unconjugated TLR7 ligands nor silica shells alone produced IL-1ß. An in vivo murine immunization study, using the model antigen ovalbumin, demonstrated that NS-TLR increased antigen-specific IgG antibody induction by 1000× with a Th1-biased immune response, compared to unconjugated TLR7 agonists. The results show that the TLR7 ligand conjugated to silica nanoshells is capable of activating an inflammasome pathway to enhance both innate immune-stimulatory and adjuvant potencies of the TLR7 agonist, thereby broadening applications of innate immune stimulators.


Assuntos
Imiquimode/imunologia , Imunidade Inata/efeitos dos fármacos , Imunoconjugados/imunologia , Receptor 7 Toll-Like/imunologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Humanos , Imiquimode/química , Imiquimode/uso terapêutico , Imunidade Inata/genética , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Nanoconchas/química , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/química , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/genética
12.
Br J Pharmacol ; 176(17): 3390-3406, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31236922

RESUMO

BACKGROUND AND PURPOSE: Salinomycin is a well-known inhibitor of human cancer stem cells (CSCs). However, the molecular mechanism(s) by which salinomycin targets colorectal CSCs is poorly understood. Here, we have investigated underlying antitumour mechanisms of salinomycin in colorectal cancer cells and three tumour models. EXPERIMENTAL APPROACH: The inhibitory effect of salinomycin on the Wnt/ß-catenin pathway was analysed with the SuperTopFlash reporter system. The mRNA expression of Wnt target genes was evaluated with real-time PCR. Effects of salinomycin on ß-catenin/TCF4E interaction were examined using co-immunoprecipitation and an in vitro GST pull-down assay. Cell proliferation was determined by BrdU incorporation and soft agar colony formation assay. The stemness of the cells was assessed by sphere formation assay. Antitumour effects of salinomycin on colorectal cancers was evaluated with colorectal CSC xenografts, APCmin/+ transgenic mice, and patient-derived colorectal tumour xenografts. KEY RESULTS: Salinomycin blocked ß-catenin/TCF4E complex formation in colorectal cancer cells and in an in vitro GST pull-down assay, thus decreasing expression of Wnt target genes. Salinomycin also suppressed the transcriptional activity mediated by ß-catenin/LEF1 or ß-catenin/TCF4E complex and exhibited an inhibitory effect on the sphere formation, proliferation, and anchorage-independent growth of colorectal cancer cells. In colorectal tumour xenografts and APCmin/+ transgenic mice, administration of salinomycin significantly reduced tumour growth and the expression of CSC-related Wnt target genes including LGR5. CONCLUSIONS AND IMPLICATIONS: Our study suggested that salinomycin could suppress the growth of colorectal cancer by disrupting the ß-catenin/TCF complex and thus may be a promising agent for colorectal cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Piranos/farmacologia , Fatores de Transcrição TCF/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Piranos/síntese química , Piranos/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Transcrição TCF/metabolismo , beta Catenina/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(4): 1370-1377, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30622177

RESUMO

Breast cancers enduring treatment with chemotherapy may be enriched for cancer stem cells or tumor-initiating cells, which have an enhanced capacity for self-renewal, tumor initiation, and/or metastasis. Breast cancer cells that express the type I tyrosine kinaselike orphan receptor ROR1 also may have such features. Here we find that the expression of ROR1 increased in breast cancer cells following treatment with chemotherapy, which also enhanced expression of genes induced by the activation of Rho-GTPases, Hippo-YAP/TAZ, or B lymphoma Mo-MLV insertion region 1 homolog (BMI1). Expression of ROR1 also enhanced the capacity of breast cancer cells to invade Matrigel, form spheroids, engraft in Rag2-/-[Formula: see text] mice, or survive treatment with paclitaxel. Treatment of mice bearing breast cancer patient-derived xenografts (PDXs) with the humanized anti-ROR1 monoclonal antibody cirmtuzumab repressed expression of genes associated with breast cancer stemness, reduced activation of Rho-GTPases, Hippo-YAP/TAZ, or BMI1, and impaired the capacity of breast cancer PDXs to metastasize or reengraft Rag2-/-[Formula: see text] mice. Finally, treatment of PDX-bearing mice with cirmtuzumab and paclitaxel was more effective than treatment with either alone in eradicating breast cancer PDXs. These results indicate that targeting ROR1 may improve the response to chemotherapy of patients with breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Anticorpos Monoclonais , Mama/efeitos dos fármacos , Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Paclitaxel/farmacologia , Complexo Repressor Polycomb 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo
14.
Biomed Res Int ; 2018: 8091283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30406141

RESUMO

For an activating immunotherapy such as adjuvants, a compound that can prolong immune stimulation may enhance efficacy. We leveraged data from two prior high throughput screens with NF-κB and interferon reporter cell lines to identify 4H-chromene-3-carbonitriles as a class of compounds that prolonged activation in both screens. We repurchased 23 of the most promising candidates. Out of these compounds we found #1 to be the most effective agent in stimulating the release of cytokines and chemokines from immune cells, including murine primary bone marrow derived dendritic cells. Mechanistically, #1 inhibited tubulin polymerization, and its effect on immune cell activation was abolished in cells mutated in the beta-tubulin gene (TUBB) encoding the site where colchicine binds. Treatment with #1 resulted in mitochondrial depolarization followed by mitogen-activated protein kinase activation. Because tubulin polymerization modulating agents have been used for chemotherapy to treat malignancy and #1 activated cytokine responses, we hypothesized that #1 could be effective for cancer immunotherapy. Intratumoral injection of #1 delayed tumor growth in a murine syngeneic model of head and neck cancer. When combined with PD-1 blockade, tumor growth slowed in the injected tumor nodule and there was an abscopal effect in an uninjected nodule on the contralateral flank, suggesting central antitumor immune activation. Thus, we identified a new class of tubulin depolymerizing agent that acts as both an innate and an adaptive immune activating agent and that limits solid tumor growth when used concurrently with a checkpoint inhibitor.


Assuntos
Adjuvantes Imunológicos/farmacologia , Imunoterapia , Microtúbulos/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Animais , Anticorpos Monoclonais/farmacologia , Benzopiranos/química , Benzopiranos/farmacologia , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Microtúbulos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Nitrilas/química , Nitrilas/farmacologia , Polimerização , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Análise de Sobrevida , Receptor 4 Toll-Like/metabolismo , Tubulina (Proteína)/metabolismo
15.
Proc Natl Acad Sci U S A ; 115(32): E7522-E7531, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038030

RESUMO

The tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) has been defined by its ability to promote tumorigenesis on carcinogen-initiated mouse skin. Activation of Wnt/ß-catenin signaling has a decisive role in mouse skin carcinogenesis, but it remains unclear how TPA activates Wnt/ß-catenin signaling in mouse skin carcinogenesis. Here, we found that TPA could enhance Wnt/ß-catenin signaling in a casein kinase 1 (CK1) ε/δ-dependent manner. TPA stabilized CK1ε and enhanced its kinase activity. TPA further induced the phosphorylation of LRP6 at Thr1479 and Ser1490 and the formation of a CK1ε-LRP6-axin1 complex, leading to an increase in cytosolic ß-catenin. Moreover, TPA increased the association of ß-catenin with TCF4E in a CK1ε/δ-dependent way, resulting in the activation of Wnt target genes. Consistently, treatment with a selective CK1ε/δ inhibitor SR3029 suppressed TPA-induced skin tumor formation in vivo, probably through blocking Wnt/ß-catenin signaling. Taken together, our study has identified a pathway by which TPA activates Wnt/ß-catenin signaling.


Assuntos
Carcinógenos/toxicidade , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/metabolismo , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/toxicidade , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Proteína Axina/metabolismo , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase Idelta/antagonistas & inibidores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fibroblastos , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Fosforilação , Estabilidade Proteica/efeitos dos fármacos , Purinas/farmacologia , Neoplasias Cutâneas/induzido quimicamente , Fator de Transcrição 4 , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
16.
Proc Natl Acad Sci U S A ; 115(29): E6836-E6844, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967183

RESUMO

Recent advances in cancer immunotherapy have improved patient survival. However, only a minority of patients with pulmonary metastatic disease respond to treatment with checkpoint inhibitors. As an alternate approach, we have tested the ability of systemically administered 1V270, a toll-like receptor 7 (TLR7) agonist conjugated to a phospholipid, to inhibit lung metastases in two variant murine 4T1 breast cancer models, as well as in B16 melanoma, and Lewis lung carcinoma models. In the 4T1 breast cancer models, 1V270 therapy inhibited lung metastases if given up to a week after primary tumor initiation. The treatment protocol was facilitated by the minimal toxic effects exerted by the phospholipid TLR7 agonist compared with the unconjugated agonist. 1V270 exhibited a wide therapeutic window and minimal off-target receptor binding. The 1V270 therapy inhibited colonization by tumor cells in the lungs in an NK cell dependent manner. Additional experiments revealed that single administration of 1V270 led to tumor-specific CD8+ cell-dependent adaptive immune responses that suppressed late-stage metastatic tumor growth in the lungs. T cell receptor (TCR) repertoire analyses showed that 1V270 therapy induced oligoclonal T cells in the lungs and mediastinal lymph nodes. Different animals displayed commonly shared TCR clones following 1V270 therapy. Intranasal administration of 1V270 also suppressed lung metastasis and induced tumor-specific adaptive immune responses. These results indicate that systemic 1V270 therapy can induce tumor-specific cytotoxic T cell responses to pulmonary metastatic cancers and that TCR repertoire analyses can be used to monitor, and to predict, the response to therapy.


Assuntos
Adenina/análogos & derivados , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Glicoproteínas de Membrana/agonistas , Ácidos Fosfatídicos/farmacologia , Receptor 7 Toll-Like/agonistas , Adenina/farmacologia , Administração Intranasal , Animais , Linfócitos T CD8-Positivos/patologia , Feminino , Imunidade Celular/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Receptores de Antígenos de Linfócitos T/imunologia , Receptor 7 Toll-Like/imunologia
17.
ACS Med Chem Lett ; 9(12): 1156-1159, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30613317

RESUMO

Activation of Toll-like receptors (TLRs) located on immune cells leads to induction of immune responses that can be useful in vaccines for infectious diseases, cancer immunotherapy, and autoimmune diseases. Novel TLR signaling pathway modulators can further enhance the efficacy of TLR ligands.

18.
JCI Insight ; 2(18)2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28931759

RESUMO

Checkpoint inhibitors have demonstrated efficacy in patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). However, the majority of patients do not benefit from these agents. To improve the efficacy of checkpoint inhibitors, intratumoral (i.t.) injection with innate immune activators, TLR7 and TLR9 agonists, were tested along with programmed death-1 receptor (PD-1) blockade. The combination therapy suppressed tumor growth at the primary injected and distant sites in human papillomavirus-negative (HPV-negative) SCC7 and MOC1, and HPV-positive MEER syngeneic mouse models. Abscopal effects and suppression of secondary challenged tumor suggest that local treatment with TLR agonists in combination with anti-PD-1 provided systemic adaptive immunity. I.t. treatment with a TLR7 agonist increased the ratio of M1 to M2 tumor-associated macrophages (TAMs) and promoted the infiltration of tumor-specific IFNγ-producing CD8+ T cells. Anti-PD-1 treatment increased T cell receptor (TCR) clonality of CD8+ T cells in tumors and spleens of treated mice. Collectively, these experiments demonstrate that combination therapy with i.t. delivery of TLR agonists and PD-1 blockade activates TAMs and induces tumor-specific adaptive immune responses, leading to suppression of primary tumor growth and prevention of metastasis in HNSCC models.


Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C3H , Receptor 7 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas , Microambiente Tumoral
19.
Cell ; 167(6): 1525-1539.e17, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912060

RESUMO

Poorly immunogenic tumor cells evade host immunity and grow even in the presence of an intact immune system, but the complex mechanisms regulating tumor immunogenicity have not been elucidated. Here, we discovered an unexpected role of the Hippo pathway in suppressing anti-tumor immunity. We demonstrate that, in three different murine syngeneic tumor models (B16, SCC7, and 4T1), loss of the Hippo pathway kinases LATS1/2 (large tumor suppressor 1 and 2) in tumor cells inhibits tumor growth. Tumor regression by LATS1/2 deletion requires adaptive immune responses, and LATS1/2 deficiency enhances tumor vaccine efficacy. Mechanistically, LATS1/2-null tumor cells secrete nucleic-acid-rich extracellular vesicles, which induce a type I interferon response via the Toll-like receptors-MYD88/TRIF pathway. LATS1/2 deletion in tumors thus improves tumor immunogenicity, leading to tumor destruction by enhancing anti-tumor immune responses. Our observations uncover a key role of the Hippo pathway in modulating tumor immunogenicity and demonstrate a proof of concept for targeting LATS1/2 in cancer immunotherapy.


Assuntos
Tolerância Imunológica , Neoplasias/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Vacinas Anticâncer/imunologia , Deleção de Genes , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Receptores Toll-Like/metabolismo , Proteínas Supressoras de Tumor/genética
20.
Proc Natl Acad Sci U S A ; 113(46): 13150-13155, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799526

RESUMO

Prodigiosin, a natural red pigment produced by numerous bacterial species, has exhibited promising anticancer activity; however, the molecular mechanisms of action of prodigiosin on malignant cells remain unclear. Aberrant activation of the Wnt/ß-catenin signaling cascade is associated with numerous human cancers. In this study, we identified prodigiosin as a potent inhibitor of the Wnt/ß-catenin pathway. Prodigiosin blocked Wnt/ß-catenin signaling by targeting multiple sites of this pathway, including the low-density lipoprotein-receptor-related protein (LRP) 6, Dishevelled (DVL), and glycogen synthase kinase-3ß (GSK3ß). In breast cancer MDA-MB-231 and MDA-MB-468 cells, nanomolar concentrations of prodigiosin decreased phosphorylation of LRP6, DVL2, and GSK3ß and suppressed ß-catenin-stimulated Wnt target gene expression, including expression of cyclin D1. In MDA-MB-231 breast cancer xenografts and MMTV-Wnt1 transgenic mice, administration of prodigiosin slowed tumor progression and reduced the expression of phosphorylated LRP6, phosphorylated and unphosphorylated DVL2, Ser9 phosphorylated GSK3ß, active ß-catenin, and cyclin D1. Through its ability to inhibit Wnt/ß-catenin signaling and reduce cyclin D1 levels, prodigiosin could have therapeutic activity in advanced breast cancers.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Prodigiosina/farmacologia , Prodigiosina/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/genética , Proteínas Desgrenhadas/genética , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Carga Tumoral/efeitos dos fármacos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA