RESUMO
MYCN amplification predicts poor prognosis in childhood neuroblastoma. To identify MYCN oncogenic signal dependencies we performed N-ethyl-N-nitrosourea (ENU) mutagenesis on the germline of neuroblastoma-prone TH-MYCN transgenic mice to generate founders which had lost tumorigenesis. Sequencing of the mutant mouse genomes identified the Ring Finger Protein 121 (RNF121WT) gene mutated to RNFM158R associated with heritable loss of tumorigenicity. While the RNF121WT protein localised predominantly to the cis-Golgi Complex, the RNF121M158R mutation in Helix 4 of its transmembrane domain caused reduced RNF121 protein stability and absent Golgi localisation. RNF121WT expression markedly increased during TH-MYCN tumorigenesis, whereas hemizygous RNF121WT gene deletion reduced TH-MYCN tumorigenicity. The RNF121WT-enhanced growth of MYCN-amplified neuroblastoma cells depended on RNF121WT transmembrane Helix 5. RNF121WT directly bound MYCN protein and enhanced its stability. High RNF121 mRNA expression associated with poor prognosis in human neuroblastoma tissues and another MYC-driven malignancy, laryngeal cancer. RNF121 is thus an essential oncogenic cofactor for MYCN and a target for drug development.
Assuntos
Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Animais , Camundongos , Humanos , Carcinogênese/genética , Complexo de Golgi/metabolismo , Camundongos Transgênicos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão GênicaRESUMO
MYCN oncogene amplification is frequently observed in aggressive childhood neuroblastoma. Using an unbiased large-scale mutagenesis screen in neuroblastoma-prone transgenic mice, we identify a single germline point mutation in the transcriptional corepressor Runx1t1, which abolishes MYCN-driven tumorigenesis. This loss-of-function mutation disrupts a highly conserved zinc finger domain within Runx1t1. Deletion of one Runx1t1 allele in an independent Runx1t1 knockout mouse model is also sufficient to prevent MYCN-driven neuroblastoma development, and reverse ganglia hyperplasia, a known pre-requisite for tumorigenesis. Silencing RUNX1T1 in human neuroblastoma cells decreases colony formation in vitro, and inhibits tumor growth in vivo. Moreover, RUNX1T1 knockdown inhibits the viability of PAX3-FOXO1 fusion-driven rhabdomyosarcoma and MYC-driven small cell lung cancer cells. Despite the role of Runx1t1 in MYCN-driven tumorigenesis neither gene directly regulates the other. We show RUNX1T1 forms part of a transcriptional LSD1-CoREST3-HDAC repressive complex recruited by HAND2 to enhancer regions to regulate chromatin accessibility and cell-fate pathway genes.
Assuntos
Carcinogênese , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Animais , Humanos , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Proteínas Correpressoras/metabolismo , Proteínas Correpressoras/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Camundongos Knockout , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genéticaRESUMO
ABSTRACT: The overall prognosis of acute myeloid leukemia (AML) remains dismal, largely because of the inability of current therapies to kill leukemia stem cells (LSCs) with intrinsic resistance. Loss of the stress sensor growth arrest and DNA damage-inducible 45 alpha (GADD45A) is implicated in poor clinical outcomes, but its role in LSCs and AML pathogenesis is unknown. Here, we define GADD45A as a key downstream target of G protein-coupled receptor (LGR)4 pathway and discover a regulatory role for GADD45A loss in promoting leukemia-initiating activity and oxidative resistance in LGR4/HOXA9-dependent AML, a poor prognosis subset of leukemia. Knockout of GADD45A enhances AML progression in murine and patient-derived xenograft (PDX) mouse models. Deletion of GADD45A induces substantial mutations, increases LSC self-renewal and stemness in vivo, and reduces levels of reactive oxygen species (ROS), accompanied by a decreased response to ROS-associated genotoxic agents (eg, ferroptosis inducer RSL3) and acquisition of an increasingly aggressive phenotype on serial transplantation in mice. Our single-cell cellular indexing of transcriptomes and epitopes by sequencing analysis on patient-derived LSCs in PDX mice and subsequent functional studies in murine LSCs and primary AML patient cells show that loss of GADD45A is associated with resistance to ferroptosis (an iron-dependent oxidative cell death caused by ROS accumulation) through aberrant activation of antioxidant pathways related to iron and ROS detoxification, such as FTH1 and PRDX1, upregulation of which correlates with unfavorable outcomes in patients with AML. These results reveal a therapy resistance mechanism contributing to poor prognosis and support a role for GADD45A loss as a critical step for leukemia-initiating activity and as a target to overcome resistance in aggressive leukemia.
Assuntos
Proteínas de Ciclo Celular , Ferroptose , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Animais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Camundongos , Humanos , Ferroptose/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas GADD45RESUMO
Many of the pro-tumorigenic functions of the oncogene MYCN are attributed to its regulation of global gene expression programs. Alternative splicing is another important regulator of gene expression and has been implicated in neuroblastoma development, however, the molecular mechanisms remain unknown. We found that MYCN up-regulated the expression of the core spliceosomal protein, SNRPD3, in models of neuroblastoma initiation and progression. High mRNA expression of SNRPD3 in human neuroblastoma tissues was a strong, independent prognostic factor for poor patient outcome. Repression of SNRPD3 expression correlated with loss of colony formation in vitro and reduced tumorigenicity in vivo. The effect of SNRPD3 on cell viability was in part dependent on MYCN as an oncogenic co-factor. RNA-sequencing revealed a global increase in the number of genes being differentially spliced when MYCN was overexpressed. Surprisingly, depletion of SNRPD3 in the presence of overexpressed MYCN further increased differential splicing, particularly of cell cycle regulators, such as BIRC5 and CDK10. MYCN directly bound SNRPD3, and the protein arginine methyltransferase, PRMT5, consequently increasing SNRPD3 methylation. Indeed, the PRMT5 inhibitor, JNJ-64619178, reduced cell viability and SNRPD3 methylation in neuroblastoma cells with high SNRPD3 and MYCN expression. Our findings demonstrate a functional relationship between MYCN and SNRPD3, which maintains the fidelity of MYCN-driven alternative splicing in the narrow range required for neuroblastoma cell growth. SNRPD3 methylation and its protein-protein interface with MYCN represent novel therapeutic targets. Hypothetical model for SNRPD3 as a co-factor for MYCN oncogenesis. SNRPD3 and MYCN participate in a regulatory loop to balance splicing fidelity in neuroblastoma cells. First MYCN transactivates SNRPD3 to lead to high-level expression. Second, SNRPD3 and MYCN form a protein complex involving PRMT5. Third, this leads to balanced alterative splicing (AS) activitiy that is favorable to neuroblastoma. Together this forms as a therapeutic vulnerability where SNRPD3 perturbation or PRMT5 inhibitors are selectively toxic to neuroblastoma by conditionally disturbing splicing activity.
Assuntos
Processamento Alternativo , Neuroblastoma , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Processamento Alternativo/genética , Proteínas Oncogênicas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neuroblastoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteína-Arginina N-Metiltransferases/genética , Quinases Ciclina-Dependentes/genéticaRESUMO
MYCN amplification occurs in approximately 20-30% of neuroblastoma patients and correlates with poor prognosis. The TH-MYCN transgenic mouse model mimics the development of human high-risk neuroblastoma and provides strong evidence for the oncogenic function of MYCN. In this study, we identified mitotic dysregulation as a hallmark of tumor initiation in the pre-cancerous ganglia from TH-MYCN mice that persists through tumor progression. Single-cell quantitative-PCR of coeliac ganglia from 10-day-old TH-MYCN mice revealed overexpression of mitotic genes in a subpopulation of premalignant neuroblasts at a level similar to single cells derived from established tumors. Prophylactic treatment using antimitotic agents barasertib and vincristine significantly delayed the onset of tumor formation, reduced pre-malignant neuroblast hyperplasia, and prolonged survival in TH-MYCN mice. Analysis of human neuroblastoma tumor cohorts showed a strong correlation between dysregulated mitosis and features of MYCN amplification, such as MYC(N) transcriptional activity, poor overall survival, and other clinical predictors of aggressive disease. To explore the therapeutic potential of targeting mitotic dysregulation, we showed that genetic and chemical inhibition of mitosis led to selective cell death in neuroblastoma cell lines with MYCN over-expression. Moreover, combination therapy with antimitotic compounds and BCL2 inhibitors exploited mitotic stress induced by antimitotics and was synergistically toxic to neuroblastoma cell lines. These results collectively suggest that mitotic dysregulation is a key component of tumorigenesis in early neuroblasts, which can be inhibited by the combination of antimitotic compounds and pro-apoptotic compounds in MYCN-driven neuroblastoma.
Assuntos
Antimitóticos , Neuroblastoma , Humanos , Camundongos , Animais , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Linhagem Celular Tumoral , Camundongos Transgênicos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão GênicaRESUMO
The MYCN oncogene and histone deacetylases (HDACs) are key driver genes in the childhood cancer, neuroblastoma. We recently described a novel pyridobenzimidazole analogue, SE486-11, which enhanced the therapeutic effectiveness of HDAC inhibitors by increasing MYCN ubiquitination through effects on the deubiquitinase, ubiquitin-specific protease 5 (USP5). Here we describe the synthesis of a novel series of pyrimido[1,2-a]benzimidazole derivatives, and an evaluation of their cytopathic effects against non-malignant and human neuroblastoma cell lines. Among the tested analogues, 4-(4-methoxyphenyl)benzo[4,5]imidazo[1,2-a]pyrimidine (3a) was the most active compound against neuroblastoma cells (IC50 ≤ 2 µM), with low cytotoxicity (IC50 ≥ 15 µM) to normal cells. We show compound 3a bound to USP5 protein (Kd = 0.47 µM) in vitro and synergistically enhanced the efficacy of HDAC inhibitors against neuroblastoma cells. Moreover, knockdown of USP5 and MYCN in treated neuroblastoma cells showed that both USP5 and MYCN expression was necessary for the cytopathic activity of compound 3a, thus providing a clinically relevant rationale for further development of this of pyrimido[1,2-a]benzimidazole.
Assuntos
Inibidores de Histona Desacetilases , Neuroblastoma , Criança , Humanos , Benzimidazóis , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Proteases Específicas de UbiquitinaRESUMO
The mitochondrion is a gatekeeper of apoptotic processes, and mediates drug resistance to several chemotherapy agents used to treat cancer. Neuroblastoma is a common solid cancer in young children with poor clinical outcomes following conventional chemotherapy. We sought druggable mitochondrial protein targets in neuroblastoma cells. Among mitochondria-associated gene targets, we found that high expression of the mitochondrial adenine nucleotide translocase 2 (SLC25A5/ANT2), was a strong predictor of poor neuroblastoma patient prognosis and contributed to a more malignant phenotype in pre-clinical models. Inhibiting this transporter with PENAO reduced cell viability in a panel of neuroblastoma cell lines in a TP53-status-dependant manner. We identified the histone deacetylase inhibitor, suberanilohydroxamic acid (SAHA), as the most effective drug in clinical use against mutant TP53 neuroblastoma cells. SAHA and PENAO synergistically reduced cell viability, and induced apoptosis, in neuroblastoma cells independent of TP53-status. The SAHA and PENAO drug combination significantly delayed tumour progression in pre-clinical neuroblastoma mouse models, suggesting that these clinically advanced inhibitors may be effective in treating the disease.
Assuntos
Translocador 2 do Nucleotídeo Adenina , Antineoplásicos , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Neuroblastoma , Animais , Camundongos , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Ácidos Hidroxâmicos/uso terapêutico , Mitocôndrias/metabolismo , Neuroblastoma/tratamento farmacológico , Vorinostat/farmacologia , Translocador 2 do Nucleotídeo Adenina/antagonistas & inibidoresRESUMO
Peripheral neuroblastic tumors (PNTs) represent a spectrum of neural-crest-derived tumors, including neuroblastoma, ganglioneuroblastoma, and ganglioneuroma. Malignant cells in PNTs are theorized to interconvert between adrenergic/noradrenergic and mesenchymal/neural crest cell states. Here, single-cell RNA-sequencing analysis of 10 PNTs demonstrates extensive transcriptomic heterogeneity. Trajectory modeling suggests that malignant neuroblasts move between adrenergic and mesenchymal cell states via an intermediate state that we term "transitional." Transitional cells express programs linked to a sympathoadrenal development and aggressive tumor phenotypes such as rapid proliferation and tumor dissemination. Among primary bulk tumor patient cohorts, high expression of the transitional gene signature is predictive of poor prognosis compared with adrenergic and mesenchymal expression patterns. High transitional gene expression in neuroblastoma cell lines identifies a similar transitional H3K27-acetylation super-enhancer landscape. Collectively, our study supports the concept that PNTs have phenotypic plasticity and uncovers potential biomarkers and therapeutic targets.
Assuntos
Ganglioneuroblastoma , Ganglioneuroma , Neuroblastoma , Adrenérgicos , Ganglioneuroblastoma/genética , Ganglioneuroblastoma/metabolismo , Ganglioneuroblastoma/patologia , Ganglioneuroma/genética , Ganglioneuroma/metabolismo , Ganglioneuroma/patologia , Humanos , Neuroblastoma/patologia , RNARESUMO
Mouse haematopoietic stem cells (HSCs) first emerge at embryonic day 10.5 (E10.5), on the ventral surface of the dorsal aorta, by endothelial-to-haematopoietic transition. We investigated whether mesenchymal stem cells, which provide an essential niche for long-term HSCs (LT-HSCs) in the bone marrow, reside in the aorta-gonad-mesonephros and contribute to the development of the dorsal aorta and endothelial-to-haematopoietic transition. Here we show that mesoderm-derived PDGFRA+ stromal cells (Mesp1der PSCs) contribute to the haemogenic endothelium of the dorsal aorta and populate the E10.5-E11.5 aorta-gonad-mesonephros but by E13.5 were replaced by neural-crest-derived PSCs (Wnt1der PSCs). Co-aggregating non-haemogenic endothelial cells with Mesp1der PSCs but not Wnt1der PSCs resulted in activation of a haematopoietic transcriptional programme in endothelial cells and generation of LT-HSCs. Dose-dependent inhibition of PDGFRA or BMP, WNT and NOTCH signalling interrupted this reprogramming event. Together, aorta-gonad-mesonephros Mesp1der PSCs could potentially be harnessed to manufacture LT-HSCs from endothelium.
Assuntos
Hemangioblastos , Mesonefro , Animais , Aorta , Hematopoese/genética , Células-Tronco Hematopoéticas , Mesoderma , CamundongosRESUMO
Roughly half of all high-risk neuroblastoma patients present with MYCN amplification. The molecular consequences of MYCN overexpression in this aggressive pediatric tumor have been studied for decades, but thus far, our understanding of the early initiating steps of MYCN-driven tumor formation is still enigmatic. We performed a detailed transcriptome landscaping during murine TH-MYCN-driven neuroblastoma tumor formation at different time points. The neuroblastoma dependency factor MEIS2, together with ASCL1, was identified as a candidate tumor-initiating factor and shown to be a novel core regulatory circuit member in adrenergic neuroblastomas. Of further interest, we found a KEOPS complex member (gm6890), implicated in homologous double-strand break repair and telomere maintenance, to be strongly upregulated during tumor formation, as well as the checkpoint adaptor Claspin (CLSPN) and three chromosome 17q loci CBX2, GJC1 and LIMD2. Finally, cross-species master regulator analysis identified FOXM1, together with additional hubs controlling transcriptome profiles of MYCN-driven neuroblastoma. In conclusion, time-resolved transcriptome analysis of early hyperplastic lesions and full-blown MYCN-driven neuroblastomas yielded novel components implicated in both tumor initiation and maintenance, providing putative novel drug targets for MYCN-driven neuroblastoma.
RESUMO
Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogenic fusion to the NRAS mutation also results in a higher leukemic stem cell frequency. Mechanistically, genetic deletion of the ß-catenin binding domain within Transcription factor 7 (TCF7)-SPI1 or use of a TCF/ß-catenin interaction antagonist abolishes the oncogenic activity of the fusion. Targeting the TCF7-SPI1 fusion in vivo with a doxycycline-inducible knockdown results in increased differentiation. Moreover, both pharmacological and genetic inhibition lead to down-regulation of SPI1 targets. Together, our results reveal an example where TCF7-SPI1 leukemia is vulnerable to pharmacological targeting of the TCF/ß-catenin interaction.
Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo , Transativadores/metabolismo , beta Catenina/metabolismo , Animais , Transplante de Medula Óssea , Carcinogênese/genética , Modelos Animais de Doenças , Feminino , GTP Fosfo-Hidrolases/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Fator 1 de Transcrição de Linfócitos T/genética , Linfócitos T/metabolismo , Transativadores/genética , Transcriptoma , beta Catenina/genéticaRESUMO
Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation, but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesized that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, and RUNX1) bind key hematopoietic genes in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other's, regulatory elements. However, their mutual regulation during normal hematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. In this study, we integrated bulk and single-cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists, with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and leukemic cells. The heptad factors GATA2, TAL1, and ERG formed an integrated subcircuit that regulates stem cell-to-erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits can be harnessed to promote specific cell-type transitions and overcome dysregulated hematopoiesis.
Assuntos
Fator de Transcrição GATA2/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Células Eritroides/metabolismo , Células Eritroides/patologia , Redes Reguladoras de Genes , Hematopoese , Humanos , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Regulador Transcricional ERG/genéticaRESUMO
PURPOSE: We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma. EXPERIMENTAL DESIGN: The effects of the drug combination on cancer growth were examined in vitro and in animal models of MYCN-amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction. RESULTS: The combination of CBL0137 and panobinostat enhanced nucleosome destabilization, induced an IFN response, inhibited DNA damage repair, and synergistically suppressed cancer cell growth. Similar synergistic effects were observed when combining CBL0137 with other HDAC inhibitors. The CBL0137/panobinostat combination significantly delayed cancer progression in xenograft models of poor outcome high-risk neuroblastoma. Complete tumor regression was achieved in the transgenic Th-MYCN neuroblastoma model which was accompanied by induction of a type I IFN and immune response. Tumor transplantation experiments further confirmed that the presence of a competent adaptive immune system component allowed the exploitation of the full potential of the drug combination. CONCLUSIONS: The combination of CBL0137 and panobinostat is effective and well-tolerated in preclinical models of aggressive high-risk neuroblastoma, warranting further preclinical and clinical investigation in other pediatric cancers. On the basis of its potential to boost IFN and immune responses in cancer models, the drug combination holds promising potential for addition to immunotherapies.
Assuntos
Carbazóis/administração & dosagem , Carbazóis/farmacologia , Cromatina/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Neuroblastoma/tratamento farmacológico , Panobinostat/administração & dosagem , Panobinostat/farmacologia , Animais , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Camundongos , Células Tumorais CultivadasRESUMO
Histone deacetylase (HDAC) inhibitors are effective in MYCN-driven cancers, because of a unique need for HDAC recruitment by the MYCN oncogenic signal. However, HDAC inhibitors are much more effective in combination with other anti-cancer agents. To identify novel compounds which act synergistically with HDAC inhibitor, such as suberanoyl hydroxamic acid (SAHA), we performed a cell-based, high-throughput drug screen of 10,560 small molecule compounds from a drug-like diversity library and identified a small molecule compound (SE486-11) which synergistically enhanced the cytotoxic effects of SAHA. Effects of drug combinations on cell viability, proliferation, apoptosis and colony forming were assessed in a panel of neuroblastoma cell lines. Treatment with SAHA and SE486-11 increased MYCN ubiquitination and degradation, and markedly inhibited tumorigenesis in neuroblastoma xenografts, and, MYCN transgenic zebrafish and mice. The combination reduced ubiquitin-specific protease 5 (USP5) levels and increased unanchored polyubiquitin chains. Overexpression of USP5 rescued neuroblastoma cells from the cytopathic effects of the combination and reduced unanchored polyubiquitin, suggesting USP5 is a therapeutic target of the combination. SAHA and SE486-11 directly bound to USP5 and the drug combination exhibited a 100-fold higher binding to USP5 than individual drugs alone in microscale thermophoresis assays. MYCN bound to the USP5 promoter and induced USP5 gene expression suggesting that USP5 and MYCN expression created a forward positive feedback loop in neuroblastoma cells. Thus, USP5 acts as an oncogenic cofactor with MYCN in neuroblastoma and the novel combination of HDAC inhibitor with SE486-11 represents a novel therapeutic approach for the treatment of MYCN-driven neuroblastoma.
Assuntos
Carcinogênese/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Proteases Específicas de Ubiquitina/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Neuroblastoma/genética , Neuroblastoma/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Vorinostat/farmacologia , Peixe-Zebra/genéticaRESUMO
To achieve the very high oncoprotein levels required to drive the malignant state cancer cells utilise the ubiquitin proteasome system to upregulate transcription factor levels. Here our analyses identify ALYREF, expressed from the most common genetic copy number variation in neuroblastoma, chromosome 17q21-ter gain as a key regulator of MYCN protein turnover. We show strong co-operativity between ALYREF and MYCN from transgenic models of neuroblastoma in vitro and in vivo. The two proteins form a nuclear coactivator complex which stimulates transcription of the ubiquitin specific peptidase 3, USP3. We show that increased USP3 levels reduce K-48- and K-63-linked ubiquitination of MYCN, thus driving up MYCN protein stability. In the MYCN-ALYREF-USP3 signal, ALYREF is required for MYCN effects on the malignant phenotype and that of USP3 on MYCN stability. This data defines a MYCN oncoprotein dependency state which provides a rationale for future pharmacological studies.
Assuntos
Carcinogênese/patologia , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/patologia , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cromossomos Humanos Par 17/genética , Variações do Número de Cópias de DNA/genética , Células HEK293 , Humanos , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Proteínas Nucleares/genética , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Ativação Transcricional/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação/fisiologiaRESUMO
Although selective BRAF inhibitors and novel immunotherapies have improved short-term treatment responses in metastatic melanoma patients, acquired resistance to these therapeutics still represent a major challenge in clinical practice. In this study, we evaluated the efficacy of Withaferin A (WFA), derived from the medicinal plant Withania Somnifera, as a novel therapeutic agent for the treatment of melanoma. WFA showed selective toxicity to melanoma cells compared to non-malignant cells. WFA induced apoptosis, significantly reduced cell proliferation and inhibited migration of melanoma cells. We identified that repression of the tumour suppressor TRIM16 diminished WFA cytotoxicity, suggesting that TRIM16 was in part responsible for the cytotoxic effects of WFA in melanoma cells. Together our data indicates that WFA has potent cytopathic effects on melanoma cells through TRIM16, suggesting a potential therapeutic application of WFA in the disease.
Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/tratamento farmacológico , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Vitanolídeos/farmacologia , Antineoplásicos/farmacologia , Apoptose , Movimento Celular , Proliferação de Células , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Proteínas com Motivo Tripartido/genética , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/genéticaRESUMO
Patients with neuroblastoma due to MYCN oncogene amplification and consequent N-Myc oncoprotein overexpression have very poor prognosis. The cyclin-dependent kinase 7 (CDK7)/super-enhancer inhibitor THZ1 suppresses MYCN gene transcription, reduces neuroblastoma cell proliferation, but does not cause significant cell death. The protein kinase phosphatase 1 nuclear targeting subunit (PNUTS) has recently been shown to interact with c-Myc protein and suppresses c-Myc protein degradation. Here we screened the U.S. Food and Drug Administration-Approved Oncology Drugs Set V from the National Cancer Institute, and identified tyrosine kinase inhibitors (TKIs), including ponatinib and lapatinib, as the Approved Oncology Drugs exerting the best synergistic anticancer effects with THZ1 in MYCN-amplified neuroblastoma cells. Combination therapy with THZ1 and ponatinib or lapatinib synergistically induced neuroblastoma cell apoptosis, while having little effects in normal nonmalignant cells. Differential gene expression analysis identified PNUTS as one of the genes most synergistically reduced by the combination therapy. Reverse transcription polymerase chain reaction and immunoblot analyses confirmed that THZ1 and the TKIs synergistically downregulated PNUTS mRNA and protein expression and reduced N-Myc protein but not N-Myc mRNA expression. In addition, PNUTS knockdown resulted in decreased N-Myc protein but not mRNA expression and decreased MYCN-amplified neuroblastoma cell proliferation and survival. As CDK7 inhibitors are currently under clinical evaluation in patients, our data suggest the addition of the TKI ponatinib or lapatinib in CDK7 inhibitor clinical trials in patients.
Assuntos
Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Fenilenodiaminas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Sinergismo Farmacológico , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Lapatinib/farmacologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Piridazinas/farmacologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Quinase Ativadora de Quinase Dependente de CiclinaRESUMO
MYCN is a major driver for the childhood cancer, neuroblastoma, however, there are no inhibitors of this target. Enhanced MYCN protein stability is a key component of MYCN oncogenesis and is maintained by multiple feedforward expression loops involving MYCN transactivation target genes. Here, we reveal the oncogenic role of a novel MYCN target and binding protein, proliferation-associated 2AG4 (PA2G4). Chromatin immunoprecipitation studies demonstrated that MYCN occupies the PA2G4 gene promoter, stimulating transcription. Direct binding of PA2G4 to MYCN protein blocked proteolysis of MYCN and enhanced colony formation in a MYCN-dependent manner. Using molecular modeling, surface plasmon resonance, and mutagenesis studies, we mapped the MYCN-PA2G4 interaction site to a 14 amino acid MYCN sequence and a surface crevice of PA2G4. Competitive chemical inhibition of the MYCN-PA2G4 protein-protein interface had potent inhibitory effects on neuroblastoma tumorigenesis in vivo. Treated tumors showed reduced levels of both MYCN and PA2G4. Our findings demonstrate a critical role for PA2G4 as a cofactor in MYCN-driven neuroblastoma and highlight competitive inhibition of the PA2G4-MYCN protein binding as a novel therapeutic strategy in the disease. SIGNIFICANCE: Competitive chemical inhibition of the PA2G4-MYCN protein interface provides a basis for drug design of small molecules targeting MYC and MYCN-binding partners in malignancies driven by MYC family oncoproteins.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína Proto-Oncogênica N-Myc/genética , Proteínas Oncogênicas/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genética , Animais , Animais Geneticamente Modificados , Carcinogênese/genética , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/métodos , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neuroblastoma/genética , Peixe-ZebraRESUMO
As a transcription factor, MYCN regulates myriad target genes including the histone chaperone FACT. Moreover, FACT and MYCN expression form a forward feedback loop in neuroblastoma. It is unclear whether MYCN is involved in chromatin remodeling in neuroblastoma through regulation of its target genes. We showed here that MYCN knockdown resulted in loss of the nucleosome-free regions through nucleosome assembly in the promoters of genes functionally enriched for DNA repair. The active mark H3K9ac was removed or replaced by the repressive mark H3K27me3 in the promoters of double-strand break repair-related genes upon MYCN knockdown. Such chromatin state alterations occurred only in MYCN-bound promoters. Consistently, MYCN knockdown resulted in a marked increase in DNA damage in the treatment with hydroxyurea. In contrast, nucleosome reorganization and histone modification changes in the enhancers largely included target genes with tumorigenesis-related functions such as cell proliferation, cell migration, and cell-cell adhesion. The chromatin state significantly changed in both MYCN-bound and MYCN-unbound enhancers upon MYCN knockdown. Furthermore, MYCN knockdown independently regulated chromatin remodeling in the promoters and the enhancers. These findings reveal the novel epigenetic regulatory role of MYCN in chromatin remodeling and provide an alternative potential epigenetic strategy for MYCN-driven neuroblastoma treatment.
RESUMO
PURPOSE: The tripartite motif (TRIM)16 acts as a tumour suppressor in both squamous cell carcinoma (SCC) and melanoma. TRIM16 is known to be secreted by keratinocytes, but no studies have been reported yet to assess the relationship between TRIM16 keratinocyte expression and melanoma development. METHODS: To study the role of TRIM16 in skin cancer development, we developed a keratinocyte TRIM16-specific knockout mouse model, and used the classical two-stage skin carcinogenesis challenge method, to assess the loss of keratinocyte TRIM16 on both papilloma, SCC and melanoma development in the skin after topical carcinogen treatment. RESULTS: Heterozygous, but not homozygous, TRIM16 knockout mice exhibited an accelerated development of skin papillomas and melanomas, larger melanoma lesions and an increased potential for lymph node metastasis. CONCLUSION: This study provides the first evidence that keratinocyte loss of the putative melanoma tumour suppressor protein, TRIM16, enhances melanomagenesis. Our data also suggest that TRIM16 expression in keratinocytes is involved in cross talk between keratinocytes and melanocytes, and has a role in melanoma tumorigenesis.