Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Intensive Care Med Exp ; 8(1): 75, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33306162

RESUMO

BACKGROUND: COVID19 is caused by the SARS-CoV-2 virus and has been associated with severe inflammation leading to organ dysfunction and mortality. Our aim was to profile the transcriptome in leukocytes from critically ill patients positive for COVID19 compared to those negative for COVID19 to better understand the COVID19-associated host response. For these studies, all patients admitted to our tertiary care intensive care unit (ICU) suspected of being infected with SARS-CoV-2, using standardized hospital screening methodologies, had blood samples collected at the time of admission to the ICU. Transcriptome profiling of leukocytes via ribonucleic acid sequencing (RNAseq) was then performed and differentially expressed genes as well as significantly enriched gene sets were identified. RESULTS: We enrolled seven COVID19 + (PCR positive, 2 SARS-CoV-2 genes) and seven age- and sex-matched COVID19- (PCR negative) control ICU patients. Cohorts were well-balanced with the exception that COVID19- patients had significantly higher total white blood cell counts and circulating neutrophils and COVID19 + patients were more likely to suffer bilateral pneumonia. The mortality rate for this cohort of COVID19 + ICU patients was 29%. As indicated by both single-gene based and gene set (GSEA) approaches, the major disease-specific transcriptional responses of leukocytes in critically ill COVID19 + ICU patients were: (i) a robust overrepresentation of interferon-related gene expression; (ii) a marked decrease in the transcriptional level of genes contributing to general protein synthesis and bioenergy metabolism; and (iii) the dysregulated expression of genes associated with coagulation, platelet function, complement activation, and tumour necrosis factor/interleukin 6 signalling. CONCLUSIONS: Our findings demonstrate that critically ill COVID19 + patients on day 1 of admission to the ICU display a unique leukocyte transcriptional profile that distinguishes them from COVID19- patients, providing guidance for future targeted studies exploring novel prognostic and therapeutic aspects of COVID19.

2.
J Invest Dermatol ; 135(11): 2805-2813, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26168233

RESUMO

Metastatic melanoma has an extremely poor prognosis with few durable remissions. The secreted matricellular protein connective tissue growth factor (CCN2) is overexpressed in cancers including melanoma and may represent a viable therapeutic target. However, the mechanism underlying the contribution of CCN2 to melanoma progression is unclear. Herein, we use the highly metastatic murine melanoma cell line B16(F10) and syngeneic mice, in which CCN2 expression is knocked out in fibroblasts, to demonstrate that loss of CCN2, either in melanoma cells or in the niche, impedes the ability of melanoma cells to invade. Specifically, loss of CCN2 in melanoma cells diminished their ability to invade through collagen in vitro, and loss of fibroblast-derived CCN2 decreased spontaneous metastases of melanoma cells from the skin to the lungs in vivo. Proliferation and tumor growth were not affected by loss of CCN2. CCN2-deficient B16(F10) cells showed reduced expression of the matricellular protein periostin; addition of recombinant periostin rescued the in vitro invasion defect of these cells. Immunohistochemical analysis of CCN2-deficient mice confirmed loss of periostin expression in the absence of CCN2. CCN2 and periostin mRNA levels are positively correlated with each other and with the stromal composition of human melanoma lesions but not BRAF mutations. Thus, CCN2 promotes invasion and metastasis via periostin and should be further evaluated as a possible therapeutic target for BRAF inhibitor-resistant melanoma.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica/genética , Neoplasias Cutâneas/genética , Animais , Biópsia por Agulha , Linhagem Celular Tumoral , Progressão da Doença , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Melanoma Experimental/secundário , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Neoplasias Cutâneas/patologia , Células Estromais/patologia , Regulação para Cima
3.
J Lipid Res ; 55(4): 765-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24503134

RESUMO

We report the design of a targeted resequencing panel for monogenic dyslipidemias, LipidSeq, for the purpose of replacing Sanger sequencing in the clinical detection of dyslipidemia-causing variants. We also evaluate the performance of the LipidSeq approach versus Sanger sequencing in 84 patients with a range of phenotypes including extreme blood lipid concentrations as well as additional dyslipidemias and related metabolic disorders. The panel performs well, with high concordance (95.2%) in samples with known mutations based on Sanger sequencing and a high detection rate (57.9%) of mutations likely to be causative for disease in samples not previously sequenced. Clinical implementation of LipidSeq has the potential to aid in the molecular diagnosis of patients with monogenic dyslipidemias with a high degree of speed and accuracy and at lower cost than either Sanger sequencing or whole exome sequencing. Furthermore, LipidSeq will help to provide a more focused picture of monogenic and polygenic contributors that underlie dyslipidemia while excluding the discovery of incidental pathogenic clinically actionable variants in nonmetabolism-related genes, such as oncogenes, that would otherwise be identified by a whole exome approach, thus minimizing potential ethical issues.


Assuntos
Dislipidemias/genética , Técnicas de Diagnóstico Molecular , Análise Mutacional de DNA , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Mutação
4.
Am J Cancer Res ; 2(5): 549-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22957307

RESUMO

RanBPM is a ubiquitous protein that has been reported to regulate several cellular processes through interactions with various proteins. However, it is not known whether RanBPM may regulate gene expression patterns. As it has been shown that RanBPM interacts with a number of transcription factors, we hypothesized that it may have wide ranging effects on gene expression that may explain its function. To test this hypothesis, we generated stable RanBPM shRNA cell lines to analyze the effect of RanBPM on global gene expression. Microarray analyses were conducted comparing the gene expression profile of Hela and HCT116 RanBPM shRNA cells versus control shRNA cells. We identified 167 annotated genes significantly up- or down-regulated in the two cell lines. Analysis of the gene set revealed that down-regulation of RanBPM led to gene expression changes that affect regulation of cell, tissue, and organ development and morphology, as well as biological processes implicated in tumorigenesis. Analysis of Transcription Factor Binding Sites (TFBS) present in the gene set identified several significantly over-represented transcription factors of the Forkhead, HMG, and Homeodomain families of transcription factors, which have previously been demonstrated as having important roles in development and tumorigenesis. In addition, the combined results of these analyses suggested that several signaling pathways were affected by RanBPM down-regulation, including ERK1/2, Wnt, Notch, and PI3K/Akt pathways. Lastly, analysis of selected target genes by quantitative RT-qPCR confirmed the changes revealed by microarray. Several of the genes up-regulated in RanBPM shRNA cells encode proteins with known oncogenic functions, such as the RON tyrosine kinase, the adhesion molecule L1CAM, and transcription factor ELF3/ESE-1, suggesting that RanBPM functions as a tumor suppressor to prevent deregulated expression of these genes. Altogether, these results suggest that RanBPM does indeed function to regulate many genomic events that regulate embryonic, tissue, and cellular development as well as those involved in cancer development and progression.

5.
Exp Cell Res ; 313(5): 952-64, 2007 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-17239853

RESUMO

CCN2 is expressed by mesenchymal cells undergoing active tissue remodeling, and is characteristically overexpressed in connective tissue pathologies such as fibrosis and cancer. However, the physiological roles and mechanism of action of CCN2 are largely unknown. Here, we probe the contribution of CCN2 to the biology of mouse embryonic fibroblasts (MEFs) using genome-wide mRNA expression profiling, proteomic and functional bioassay analyses. We show that ccn2-/- mouse embryonic fibroblasts (MEFs) have significantly reduced the expression of pro-adhesive, pro-inflammatory and pro-angiogenic genes such as interleukin-6 (IL-6), ceruloplasmin, thrombospondin-1, lipocalin-2 and syndecan 4. Anti-syndecan 4 antibody reduced ERK phosphorylation in ccn2+/+ MEFs. In ccn2+/+ MEFs, the MEK inhibitor U0126 and dominant negative ras reduced expression of IL-6 and lipocalin-2. Overexpressing syndecan 4 in ccn2-/- MEFs restored IL-6 and lipocalin-2 mRNA expression. Syndecan 4 has been shown to mediate cell migration. We found that ccn2+/+ MEFs migrated significantly faster than ccn2-/- MEFs; anti-syndecan 4 antibody and U0126 reduced the migration of ccn2+/+ MEFs to that of ccn2-/- MEFs. These results collectively support the notion that syndecan 4 acts downstream of CCN2 in MEFs, and that reduced syndecan 4 expression contributes to at least part of the ccn2-/- phenotype. Further, these results suggest that CCN2 is required for MEFs to contribute to aspects of tissue remodeling. Consistent with this notion, whereas ccn2+/+ MEFs displayed actin stress fibers and focal adhesions at the cell periphery consistent with a migratory phenotype, ccn2-/- MEFs displayed reduced focal adhesions and actin stress fibers, and a reduced ability to transduce forces across a collagen gel matrix. Collectively, these results suggest that CCN2 supplies essential, non-redundant functions required for fibroblasts to properly participate in features of embryogenesis, and further suggest that CCN2 may play essential roles in adult wound healing, tissue repair and fibrogenesis.


Assuntos
Movimento Celular , Embrião de Mamíferos/citologia , Fibroblastos/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Células Cultivadas , Sistemas Computacionais , Fator de Crescimento do Tecido Conjuntivo , Matriz Extracelular/fisiologia , Fibroblastos/metabolismo , Adesões Focais/fisiologia , Perfilação da Expressão Gênica/métodos , Proteínas Imediatamente Precoces/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Reação em Cadeia da Polimerase , Proteômica , Transdução de Sinais , Sindecana-4/metabolismo , Cicatrização
6.
Cell Cycle ; 5(16): 1872-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16931907

RESUMO

E2F transcription factors are central to epidermal morphogenesis and regeneration after injury. The precise nature of E2F target genes involved in epidermal formation and repair has yet to be determined. Identification of these genes is essential to understand how E2F proteins regulate fundamental aspects of epidermal homeostasis and transformation. We have conducted a genome-wide screen using CpG island microarray analysis to identify novel promoters bound by E2F3 and E2F5 in human keratinocytes. We further characterized several of these genes, and determined that multiple E2F and retinoblastoma (pRb) family proteins associate with them in exponentially proliferating cells. We also assessed the effect on E2F and pRb binding to those genes in response to differentiation induced by bone morphogenetic protein-6 (BMP-6), or to activation of repair mechanisms induced by transforming growth factor-beta (TGF-beta). These studies demonstrate promoter- and cytokine-specific changes in binding profiles of E2F and/or pRb family proteins. For example, E2F1, 3, 4 and p107 were recruited to the N-myc promoter in cells treated with BMP-6, whereas E2F1, 3, 4, 5, p107 and p130 were bound to this promoter in the presence of TGF-beta. Functionally, these different interactions resulted in transcriptional repression by BMP-6 and TGF-beta of the N-myc gene, via mechanisms that involved E2F binding to the promoter and association with pRb-family proteins. Thus, multiple combinations of E2F and pRb family proteins may associate with and transcriptionally regulate a given target promoter in response to differentiation and injury-repair stimuli in epidermal keratinocytes.


Assuntos
Diferenciação Celular , Proliferação de Células , Fator de Transcrição E2F3/metabolismo , Fator de Transcrição E2F5/metabolismo , Regulação da Expressão Gênica , Queratinócitos/metabolismo , Proteína do Retinoblastoma/metabolismo , Animais , Aurora Quinases , Proteína Morfogenética Óssea 6 , Proteínas Morfogenéticas Ósseas/farmacologia , Células Cultivadas , Imunoprecipitação da Cromatina , DNA/genética , DNA/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína p107 Retinoblastoma-Like/metabolismo , Proteína p130 Retinoblastoma-Like/metabolismo , Transfecção , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta1
7.
J Biol Chem ; 281(16): 10715-26, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16484225

RESUMO

CCN2 is induced by transforming growth factor-beta (TGFbeta) in fibroblasts and is overexpressed in connective tissue disease. CCN2 has been proposed to be a downstream mediator of TGFbeta action in fibroblasts; however, the role of CCN2 in regulating this process unclear. By using embryonic fibroblasts isolated from ccn2-/- mice, we showed that CCN2 is required for a subset of responses to TGFbeta. Affymetrix genome-wide expression profiling revealed that 942 transcripts were induced by TGFbeta greater than 2-fold in ccn2+/+ fibroblasts, of which 345 were not induced in ccn2-/- fibroblasts, including pro-adhesive and matrix remodeling genes. Whereas TGFbeta properly induced a generic Smad3-responsive promoter in ccn2-/- fibroblasts, TGFbeta-induced activation of focal adhesion kinase (FAK) and Akt was reduced in ccn2-/- fibroblasts. Emphasizing the importance of FAK and Akt activation in CCN2-dependent transcriptional responses to TGFbeta in fibroblasts, CCN2-dependent transcripts were not induced by TGFbeta in fak-/- fibroblasts and were reduced by wortmannin in wild-type fibroblasts. Akt1 overexpression in ccn2-/- fibroblasts rescued the TGFbeta-induced transcription of CCN2-dependent mRNA. Finally, induction of TGFbeta-induced fibroblast adhesion to fibronectin and type I collagen was significantly diminished in ccn2-/- fibroblasts. Thus in embryonic fibroblasts, CCN2 is a necessary cofactor required for TGFbeta to activate the adhesive FAK/Akt/phosphatidylinositol 3-kinase cascade, FAK/Akt-dependent genes, and adhesion to matrix.


Assuntos
Fibroblastos/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Androstadienos/farmacologia , Animais , Western Blotting , Adesão Celular , Colágeno/química , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo , Inibidores Enzimáticos/farmacologia , Fibronectinas/metabolismo , Camundongos , Camundongos Transgênicos , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Transfecção , Fator de Crescimento Transformador beta1 , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA