Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 29868, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27430378

RESUMO

Plasticity in epithelial tissues relates to processes of embryonic development, tissue fibrosis and cancer progression. Pharmacological modulation of epithelial transitions during disease progression may thus be clinically useful. Using human keratinocytes and a robotic high-content imaging platform, we screened for chemical compounds that reverse transforming growth factor ß (TGF-ß)-induced epithelial-mesenchymal transition. In addition to TGF-ß receptor kinase inhibitors, we identified small molecule epithelial plasticity modulators including a naturally occurring hydroxysterol agonist of the liver X receptors (LXRs), members of the nuclear receptor transcription factor family. Endogenous and synthetic LXR agonists tested in diverse cell models blocked α-smooth muscle actin expression, myofibroblast differentiation and function. Agonist-dependent LXR activity or LXR overexpression in the absence of ligand counteracted TGF-ß-mediated myofibroblast terminal differentiation and collagen contraction. The protective effect of LXR agonists against TGF-ß-induced pro-fibrotic activity raises the possibility that anti-lipidogenic therapy may be relevant in fibrotic disorders and advanced cancer.


Assuntos
Diferenciação Celular/genética , Receptores X do Fígado/genética , Miofibroblastos/citologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Diferenciação Celular/efeitos dos fármacos , Colágeno/metabolismo , Desenvolvimento Embrionário/genética , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Receptores X do Fígado/agonistas , Camundongos , Receptores de Fatores de Crescimento Transformadores beta , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fator de Crescimento Transformador beta/genética
2.
J Heart Lung Transplant ; 35(9): 1124-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27266812

RESUMO

BACKGROUND: Cardiac allograft vasculopathy (CAV) is a leading expression of chronic organ rejection at and beyond 1 year post-transplantation. Host bone marrow (BM)-derived cell migration to the allograft has been demonstrated in earlier work. Vascular endothelial growth factor (VEGF) is endogenously overexpressed within allografts. Graft neo-angiogenesis has been proposed as a mechanism by which VEGF may contribute to CAV. Herein we assess the therapeutic effect of inhibition of VEGF expression in CAV. METHODS: In 129J mice, female donor hearts were heterotopically transplanted into C57/B16 males and treated with soluble VEGF receptor 1 (sVEGFR1) or vehicle control. The effect of VEGF inhibition on BM-mediated microvascular outgrowth and endothelial cell migration and proliferation were assessed using in vitro assays of aortic ring angiogenesis, wound healing and proliferation, respectively. RESULTS: At 21 days post-transplantation, treatment with sVEGFR1 significantly reduced both percent luminal narrowing (p < 0.05) and percent of vessels affected (p < 0.005). sVEGFR1 significantly reduced average wet heart weight (p < 0.05), whereas mean ventricular cross-sectional area remained similar. Treatment of aortic rings with both sVEGFR1 and VEGFR2 tyrosine phosphorylation inhibitor (Ki 8751) significantly reduced BM-mediated microvascular outgrowth length (p < 0.05) and area (p < 0.05). Treatment of human coronary artery endothelial cells with sVEGFR1 and Ki 8751 significantly reduced BM-mediated endothelial cell migration (p < 0.005) and proliferation (p < 0.05). CONCLUSIONS: VEGF inhibition reduces the severity and incidence of CAV in mouse models of cardiac transplantation, while attenuating myocardial edema and neo-angiogenesis. Using this model, we provide in vitro evidence of the role of VEGF signaling in BM-mediated microvascular outgrowth and endothelial cell migration and proliferation. VEGF inhibition may represent a novel approach to CAV treatment and prevention.


Assuntos
Fator A de Crescimento do Endotélio Vascular/metabolismo , Aloenxertos , Animais , Vasos Coronários , Feminino , Transplante de Coração , Humanos , Masculino , Camundongos , Transplante Homólogo
3.
Int J Biochem Cell Biol ; 74: 121-34, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26916505

RESUMO

Epithelial to mesenchymal transition (EMT) plays a key role in tumor progression and metastasis as a crucial event for cancer cells to trigger the metastatic niche. Transforming growth factor-ß (TGF-ß) has been shown to play an important role as an EMT inducer in various stages of carcinogenesis. Previous reports had shown that antitumor vanadium inhibits the metastatic potential of tumor cells by reducing MMP-2 expression and inducing ROS-dependent apoptosis. However, the role of vanadium in (TGF-ß)-induced EMT remains unclear. In the present study, we report for the first time on the inhibitory effects of vanadium on (TGF-ß)-mediated EMT followed by down-regulation of ex vivo cancer stem cell markers. The results demonstrate blockage of (TGF-ß)-mediated EMT by vanadium and reduction in the mitochondrial potential of tumor cells linked to EMT and cancer metabolism. Furthermore, combination of vanadium and carboplatin (a) resulted in synergistic antitumor activity in ex vivo cell cultures, and (b) prompted G0/G1 cell cycle arrest and sensitization of tumor cells to carboplatin-induced apoptosis. Overall, the findings highlight the multifaceted antitumor action of vanadium and its synergistic antitumor efficacy with current chemotherapy drugs, knowledge that could be valuable for targeting cancer cell metabolism and cancer stem cell-mediated metastasis in aggressive chemoresistant tumors.


Assuntos
Antineoplásicos/farmacologia , Carboplatina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Vanádio/farmacologia , Células A549 , Linhagem Celular Tumoral , Sinergismo Farmacológico , Citometria de Fluxo , Imunofluorescência , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos
4.
J Cell Physiol ; 230(12): 3084-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26096876

RESUMO

Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine which stimulates the differentiation of fibroblasts into myofibroblasts. Myofibroblasts are critical for normal wound healing, but also accumulate pathologically in a number of chronic inflammatory conditions where they are key contributors to aberrant tissue remodeling and fibrosis, and in cancer stroma. In the current study, we identified a role for tamoxifen as a potent inhibitor of the TGF-ß-mediated activation of primary human skin and breast fibroblasts. Our data indicate that tamoxifen does not interfere with canonical Smad signaling downstream of TGF-ß but rather blocks non-Smad signaling through ERK1/2 MAP-kinase and the AP-1 transcription factor FRA2. We further demonstrate by siRNA-mediated knockdown that FRA2 is critical for the induced expression of myogenic proteins in response to TGF-ß. Functionally, TGF-ß-stimulated fibroblast-mediated contraction of collagen gels was impaired in the presence of tamoxifen. Altogether, these data demonstrate that tamoxifen prevents myofibroblast differentiation and, therefore, may provide therapeutic benefits to patients suffering from chronic inflammatory conditions or cancer.


Assuntos
Mama/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miofibroblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Tamoxifeno/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Biomarcadores/metabolismo , Mama/citologia , Mama/enzimologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Forma Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Humanos , Miofibroblastos/enzimologia , Fenótipo , Interferência de RNA , Pele/citologia , Pele/enzimologia , Transfecção
5.
Methods Mol Biol ; 836: 35-52, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22252626

RESUMO

Versican, a chondroitin sulfate proteoglycan, is one of the main components of the extracellular matrix and is considered to be crucial to several key cellular processes involved in development and disease. There is differential temporal and spatial expression of versican by multiple cell types and in different developmental and pathological timeframes. In order to fully appreciate the functional roles of versican as it relates to changing patterns of expression in development and disease, an in-depth knowledge of versican's biosynthetic processing is necessary. We have recently shown that ß-catenin/T-cell factor (TCF) complex formation at the versican promoter site is essential for activation of versican transcription. The transcriptional activator ß-catenin is the key mediator of the canonical Wnt signaling pathway. However, ß-catenin does not itself bind DNA and thus functions via interaction with TCF/Lymphoid-enhancing factor (LEF) transcription factors. These proteins contain a high-mobility group (HMG) box that binds DNA in a sequence-specific manner. Thus, in the case of active Wnt signaling, ß-catenin activates, in cooperation with proteins of the TCF/LEF family, the expression of a wide variety of target genes. The goal of this chapter is to describe the techniques used to elucidate the transcriptional control of versican by the ß-catenin/TCF response elements in its promoter site and to demonstrate how this signaling may be assayed experimentally. These approaches provide insight into the transcriptional regulation of the versican gene and provide the basis for the identification of novel Wnt/ß-catenin/TCF-regulated genes that are part of the signaling machinery regulating early embryogenesis, neoplasia, and cardiovascular remodeling.


Assuntos
Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Fatores de Transcrição TCF/metabolismo , Versicanas/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Humanos , Transdução de Sinais/genética , Transcrição Gênica/genética
6.
Respirology ; 16(1): 22-33, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21054675

RESUMO

For translational respiratory research including in the development of clinical diagnostic tools, a minimally invasive imaging method, which can provide both cellular and extracellular structural details with sufficient specificity, sensitivity and spatial resolution, is particularly useful. Multiphoton microscopy causes excitation of endogenously fluorescent macromolecular systems and induces highly specific second harmonic generation signals from non-centrosymmetric macromolecules such as fibrillar collagens. Both these signals can be captured simultaneously to provide spatially resolved 3D structural organization of extracellular matrix as well as the cellular morphologies in their native states. Besides briefly discussing the fundamentals of multiphoton excitation fluorescence and harmonic generation signals and the instrumentation details, this review focuses on the specific applications of these imaging modalities in lung structural imaging, particularly morphological features of alveolar structures, visualizing and quantifying extracellular matrix remodelling accompanying emphysematous destructions as well as the IPF, detecting lung cancers and the potential use in the tissue engineering applications.


Assuntos
Pneumopatias/diagnóstico , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Pesquisa Translacional Biomédica/métodos , Remodelação das Vias Aéreas , Matriz Extracelular/patologia , Feminino , Humanos , Pulmão/anatomia & histologia , Pulmão/citologia , Pneumopatias/patologia , Masculino , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Engenharia Tecidual/métodos , Pesquisa Translacional Biomédica/instrumentação
7.
Can J Physiol Pharmacol ; 84(1): 77-92, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16845893

RESUMO

Versican, a chondroitin sulfate proteoglycan, is one of the main components of the extracellular matrix, which provides a loose and hydrated matrix during key events in development and disease. Versican participates in cell adhesion, proliferation, migration, and angiogenesis, and hence plays a central role in tissue morphogenesis and maintenance. In addition, versican contributes to the development of a number of pathologic processes including atherosclerotic vascular diseases, cancer, tendon remodeling, hair follicle cycling, central nervous system injury, and neurite outgrowth. Versican is a complex molecule consisting of modular core protein domains and glycosaminoglycan side chains, and there are various steps of synthesis and processes regulating them. Also, there is differential temporal and spatial expression of versican by multiple cell types and in different developmental and pathological time frames. To fully appreciate the functional roles of versican as it relates to changing patterns of expression in development and disease, an in depth knowledge of versican's biosynthetic processing is necessary. The goal of this review is to evaluate the current status of our knowledge regarding the transcriptional control of versican gene regulation. We will be focusing on the signal transduction pathways, promoter regions, cis-acting elements, and trans-factors that have been characterized.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Lectinas Tipo C/metabolismo , Animais , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/genética , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/genética , Transdução de Sinais , Transcrição Gênica , Versicanas
8.
J Biol Chem ; 280(13): 13019-28, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15668231

RESUMO

The proteoglycan versican is pro-atherogenic and central to vascular injury and repair events. We identified the signaling pathways and promoter elements involved in regulation of versican expression in vascular smooth muscle cells. Phosphatidylinositol 3-kinase inhibitor, LY294002, significantly decreased versican-luciferase (Luc) promoter activity and endogenous mRNA levels. We further examined the roles of protein kinase B and glycogen synthase kinase (GSK)-3beta, downstream effectors of phosphatidylinositol 3-kinase, in the regulation of versican transcription. Co-transfection of dominant negative and constitutively active protein kinase B constructs with a versican-Luc construct decreased and increased promoter activity, respectively. Inhibition of GSK-3beta activity by LiCl augmented accumulation of beta-catenin and caused induction of versican-Luc activity as well as versican mRNA levels. Beta-catenin has no DNA binding domain, therefore it cannot directly induce transcription of the versican promoter. Software analysis of the versican promoter revealed two potential binding sites for T-cell factors (TCFs), proteins that confer transcriptional activation of beta-catenin. Electrophoretic mobility shift and supershift assays revealed specific binding of human TCF-4 and beta-catenin to oligonucleotides corresponding to a potential TCF binding site in the versican promoter. In addition to binding assays, we directly assessed the dependence of versican promoter activity on TCF binding sites. Site-directed mutagenesis of the TCF site located -492 bp relative to the transcription start site markedly diminished versican-Luc activity. Co-transfection of TCF-4 with versican-Luc did not increase promoter activity, but addition of beta-catenin and TCF-4 significantly stimulated basal versican promoter activity. Our findings suggest that versican transcription is predominantly mediated by the GSK-3beta pathway via the beta-catenin-TCF transcription factor complex in smooth muscle cells, wherein such regulation contributes to the normal or aberrant formation of provisional matrix in vascular injury and repair events.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/biossíntese , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Regiões Promotoras Genéticas , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Aorta/citologia , Sítios de Ligação , Linhagem Celular Tumoral , Cromonas/farmacologia , DNA/metabolismo , DNA Complementar/metabolismo , Inibidores Enzimáticos/farmacologia , Deleção de Genes , Genes Reporter , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Immunoblotting , Lectinas Tipo C , Cloreto de Lítio/farmacologia , Luciferases/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide , Modelos Genéticos , Morfolinas/farmacologia , Oligonucleotídeos/química , Inibidores de Fosfoinositídeo-3 Quinase , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , RNA/metabolismo , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transcrição Gênica , Transfecção , Versicanas , Cicatrização , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA