Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Br J Haematol ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736325

RESUMO

B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) blasts strictly depend on the transport of extra-cellular asparagine (Asn), yielding a rationale for L-asparaginase (ASNase) therapy. However, the carriers used by ALL blasts for Asn transport have not been identified yet. Exploiting RS4;11 cells as BCP-ALL model, we have found that cell Asn is lowered by either silencing or inhibition of the transporters ASCT2 or SNAT5. The inhibitors V-9302 (for ASCT2) and GluγHA (for SNAT5) markedly lower cell proliferation and, when used together, suppress mTOR activity, induce autophagy and cause a severe nutritional stress, leading to a proliferative arrest and a massive cell death in both the ASNase-sensitive RS4;11 cells and the relatively ASNase-insensitive NALM-6 cells. The cytotoxic effect is not prevented by coculturing leukaemic cells with primary mesenchymal stromal cells. Leukaemic blasts of paediatric ALL patients express ASCT2 and SNAT5 at diagnosis and undergo marked cytotoxicity when exposed to the inhibitors. ASCT2 expression is positively correlated with the minimal residual disease at the end of the induction therapy. In conclusion, ASCT2 and SNAT5 are the carriers exploited by ALL cells to transport Asn, and ASCT2 expression is associated with a lower therapeutic response. ASCT2 may thus represent a novel therapeutic target in BCP-ALL.

2.
Biomedicines ; 11(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37760903

RESUMO

Dysregulated inflammatory signaling is a key feature of myeloproliferative neoplasms (MPNs), most notably of myelofibrosis (MF). Indeed, MF is considered the prototype of onco-inflammatory hematologic cancers. While increased levels of circulatory and bone marrow cytokines are a well-established feature of all MPNs, a very recent body of literature is intriguingly pinpointing the selective overexpression of cytokine receptors by MF hematopoietic stem and progenitor cells (HSPCs), which, by contrast, are nearly absent or scarcely expressed in essential thrombocythemia (ET) or polycythemia vera (PV) cells. This new evidence suggests that MF CD34+ cells are uniquely capable of sensing inflammation, and that activation of specific cytokine signaling axes may contribute to the peculiar aggressive phenotype and biological behavior of this disorder. In this review, we will cover the main cytokine systems peculiarly activated in MF and how cytokine receptor targeting is shaping a novel therapeutic avenue in this disease.

3.
Front Oncol ; 12: 980379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072806

RESUMO

In myeloproliferative neoplasm (MPNs), bone marrow fibrosis - mainly driven by the neoplastic megakaryocytic clone - dictates a more severe disease stage with dismal prognosis and higher risk of leukemic evolution. Therefore, accurate patient allocation into different disease categories and timely identification of fibrotic transformation are mandatory for adequate treatment planning. Diagnostic strategy still mainly relies on clinical/laboratory assessment and bone marrow histopathology, which, however, requires an invasive procedure and frequently poses challenges also to expert hemopathologists. Here we tested the diagnostic accuracy of the detection, by flow cytometry, of CCR2+CD34+ cells to discriminate among MPN subtypes with different degrees of bone marrow fibrosis. We found that the detection of CCR2 on MPN CD34+ cells has a very good diagnostic accuracy for the differential diagnosis between "true" ET and prePMF (AUC 0.892, P<0.0001), and a good diagnostic accuracy for the differential diagnosis between prePMF and overtPMF (AUC 0.817, P=0.0089). Remarkably, in MPN population, the percentage of CCR2-expressing cells parallels the degree of bone marrow fibrosis. In ET/PV patients with a clinical picture suggestive for transition into spent phase, we demonstrated that only patients with confirmed secondary MF showed significantly higher levels of CCR2+CD34+ cells. Overall, flow cytometric CCR2+CD34+ cell detection can be envisioned in support of conventional bone marrow histopathology in compelling clinical scenarios, with the great advantage of being extremely rapid. For patients in follow-up, its role can be conceived as an initial patient screening for subsequent bone marrow biopsy when disease evolution is suspected.

4.
Cells ; 11(3)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35159135

RESUMO

T cell-mediated adaptive immunity is designed to respond to non-self antigens and pathogens through the activation and proliferation of various T cell populations. T helper 1 (Th1), Th2, Th17 and Treg cells finely orchestrate cellular responses through a plethora of paracrine and autocrine stimuli that include cytokines, autacoids, and hormones. Hydrogen sulfide (H2S) is one of these mediators able to induce/inhibit immunological responses, playing a role in inflammatory and autoimmune diseases, neurological disorders, asthma, acute pancreatitis, and sepsis. Both endogenous and exogenous H2S modulate numerous important cell signaling pathways. In monocytes, polymorphonuclear, and T cells H2S impacts on activation, survival, proliferation, polarization, adhesion pathways, and modulates cytokine production and sensitivity to chemokines. Here, we offer a comprehensive review on the role of H2S as a natural buffer able to maintain over time a functional balance between Th1, Th2, Th17 and Treg immunological responses.


Assuntos
Sulfeto de Hidrogênio , Pancreatite , Doença Aguda , Imunidade Adaptativa , Cistationina gama-Liase/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo
5.
Cells ; 10(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34685575

RESUMO

Myeloproliferative neoplasms are hematologic malignancies typified by a substantial heritable component. Germline variants may affect the risk of developing a MPN, as documented by GWAS studies on large patient cohorts. In addition, once the MPN occurred, inherited host genetic factors can be responsible for tuning the disease phenotypic presentation, outcome, and response to therapy. This review covered the polymorphisms that have been variably associated to MPNs, discussing them in the functional perspective of the biological pathways involved. Finally, we reviewed host genetic determinants of clonal hematopoiesis, a pre-malignant state that may anticipate overt hematologic neoplasms including MPNs.


Assuntos
Células Germinativas/metabolismo , Transtornos Mieloproliferativos/genética , Variantes Farmacogenômicos/genética , Humanos , Fenótipo , Fatores de Risco , Resultado do Tratamento
6.
Blood Adv ; 5(23): 5164-5178, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34614505

RESUMO

Mechanisms underlying the resistance of acute lymphoblastic leukemia (ALL) blasts to l-asparaginase are still incompletely known. Here we demonstrate that human primary bone marrow mesenchymal stromal cells (MSCs) successfully adapt to l-asparaginase and markedly protect leukemic blasts from the enzyme-dependent cytotoxicity through an amino acid trade-off. ALL blasts synthesize and secrete glutamine, thus increasing extracellular glutamine availability for stromal cells. In turn, MSCs use glutamine, either synthesized through glutamine synthetase (GS) or imported, to produce asparagine, which is then extruded to sustain asparagine-auxotroph leukemic cells. GS inhibition prevents mesenchymal cells adaptation to l-asparaginase, lowers glutamine secretion by ALL blasts, and markedly hinders the protection exerted by MSCs on leukemic cells. The pro-survival amino acid exchange is hindered by the inhibition or silencing of the asparagine efflux transporter SNAT5, which is induced in mesenchymal cells by ALL blasts. Consistently, primary MSCs from ALL patients express higher levels of SNAT5 (P < .05), secrete more asparagine (P < .05), and protect leukemic blasts (P < .05) better than MSCs isolated from healthy donors. In conclusion, ALL blasts arrange a pro-leukemic amino acid trade-off with bone marrow mesenchymal cells, which depends on GS and SNAT5 and promotes leukemic cell survival during l-asparaginase treatment.


Assuntos
Células-Tronco Mesenquimais , Leucemia-Linfoma Linfoblástico de Células Precursoras , Asparaginase , Asparagina , Células da Medula Óssea , Humanos
7.
Cancers (Basel) ; 13(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067466

RESUMO

Single nucleotide polymorphisms (SNPs) can modify the individual pro-inflammatory background and may therefore have relevant implications in the MPN setting, typified by aberrant cytokine production. In a cohort of 773 primary myelofibrosis (PMF), we determined the contribution of the rs1024611 SNP of CCL2-one of the most potent immunomodulatory chemokines-to the clinical and biological characteristics of the disease, demonstrating that male subjects carrying the homozygous genotype G/G had an increased risk of PMF and that, among PMF patients, the G/G genotype is an independent prognostic factor for reduced overall survival. Functional characterization of the SNP and the CCL2-CCR2 axis in PMF showed that i) homozygous PMF cells are the highest chemokine producers as compared to the other genotypes; ii) PMF CD34+ cells are a selective target of CCL2, since they uniquely express CCR2 (CCL2 receptor); iii) activation of the CCL2-CCR2 axis boosts pro-survival signals induced by driver mutations via Akt phosphorylation; iv) ruxolitinib effectively counteracts CCL2 production and down-regulates CCR2 expression in PMF cells. In conclusion, the identification of the role of the CCL2/CCR2 chemokine system in PMF adds a novel element to the pathophysiological picture of the disease, with clinical and therapeutic implications.

8.
Cells ; 9(9)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967342

RESUMO

Among hematologic malignancies, the classic Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are considered a model of inflammation-related cancer development. In this context, the use of immune-modulating agents has recently expanded the MPN therapeutic scenario. Cytokines are key mediators of an auto-amplifying, detrimental cross-talk between the MPN clone and the tumor microenvironment represented by immune, stromal, and endothelial cells. This review focuses on recent advances in cytokine-profiling of MPN patients, analyzing different expression patterns among the three main Philadelphia-negative (Ph-negative) MPNs, as well as correlations with disease molecular profile, phenotype, progression, and outcome. The role of the megakaryocytic clone as the main source of cytokines, particularly in myelofibrosis, is also reviewed. Finally, we report emerging intriguing evidence on the contribution of host genetic variants to the chronic pro-inflammatory state that typifies MPNs.


Assuntos
Citocinas/genética , Neoplasias Hematológicas/genética , Policitemia Vera/genética , Polimorfismo Genético , Mielofibrose Primária/genética , Trombocitemia Essencial/genética , Comunicação Celular , Citocinas/classificação , Citocinas/imunologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/imunologia , Humanos , Fatores Imunológicos/uso terapêutico , Leucócitos/imunologia , Leucócitos/patologia , Megacariócitos/imunologia , Megacariócitos/patologia , Fenótipo , Policitemia Vera/diagnóstico , Policitemia Vera/tratamento farmacológico , Policitemia Vera/imunologia , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/imunologia , Células Estromais/imunologia , Células Estromais/patologia , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/tratamento farmacológico , Trombocitemia Essencial/imunologia , Resultado do Tratamento , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
9.
Adv Biol Regul ; 77: 100737, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32773100

RESUMO

Natural killer (NK) cells are pivotal effectors of the innate immunity protecting an individual from microbes. They are the first line of defense against invading viruses, given their substantial ability to directly target infected cells without the need for specific antigen presentation. By establishing cellular networks with a variety of cell types such as dendritic cells, NK cells can also amplify and modulate antiviral adaptive immune responses. In this review, we will examine the role of NK cells in SARS-COV2 infections causing the ongoing COVID19 pandemic, keeping in mind the controversial role of NK cells specifically in viral respiratory infections and in inflammatory-driven lung damage. We discuss lessons learnt from previous coronavirus outbreaks in humans (caused by SARS-CoV-1 and MERS-COV).


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/epidemiologia , Interações Hospedeiro-Patógeno/imunologia , Células Matadoras Naturais/imunologia , Pandemias , Pneumonia Viral/epidemiologia , Insuficiência Respiratória/epidemiologia , Doença Aguda , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Interferon gama/genética , Interferon gama/imunologia , Interleucinas/genética , Interleucinas/imunologia , Células Matadoras Naturais/patologia , Células Matadoras Naturais/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Ativação Linfocitária , Proteína 1 de Membrana Associada ao Lisossomo/genética , Proteína 1 de Membrana Associada ao Lisossomo/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Pneumonia Viral/complicações , Pneumonia Viral/diagnóstico , Pneumonia Viral/imunologia , Insuficiência Respiratória/complicações , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/imunologia , SARS-CoV-2 , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
10.
Cardiovasc Diabetol ; 19(1): 46, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264868

RESUMO

BACKGROUND: The clear evidence of cardiovascular benefits in cardiovascular outcome trials of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in type 2 diabetes might suggest an effect on atherosclerotic plaque vulnerability and/or thrombosis, in which myeloid angiogenic cells (MAC) and platelets (PLT) are implicated. We tested the effects of SGLT2i on inflammation and oxidant stress in a model of stearic acid (SA)-induced lipotoxicity in MAC and on PLT activation. The possible involvement of the Na+/H+ exchanger (NHE) was also explored. METHOD: MAC and PLT were isolated from peripheral blood of healthy subjects and incubated with/without SGLT2i [empagliflozin (EMPA) and dapagliflozin (DAPA) 1-100 µM] to assess their effects on SA (100 µM)-induced readouts of inflammation, oxidant stress and apoptosis in MAC and on expression of PLT activation markers by flow-cytometry after ADP-stimulation. Potential NHE involvement was tested with amiloride (aspecific NHE inhibitor) or cariporide (NHE1 inhibitor). Differences among culture conditions were identified using one-way ANOVA or Friedman test. RESULTS: NHE isoforms (1,5-9), but not SGLT2 expression, were expressed in MAC and PLT. EMPA and DAPA (100 µM) significantly reduced SA-induced inflammation (IL1ß, TNFα, MCP1), oxidant stress (SOD2, TXN, HO1), but not apoptosis in MAC. EMPA and DAPA (both 1 µM) reduced PLT activation (CD62p and PAC1 expression). SGLT2i effects were mimicked by amiloride, and only partially by cariporide, in MAC, and by both inhibitors in PLT. CONCLUSIONS: EMPA and DAPA ameliorated lipotoxic damage in stearate-treated MAC, and reduced ADP-stimulated PLT activation, potentially via NHE-inhibition, thereby pointing to plaque stabilization and/or thrombosis inhibition as potential mechanism(s) involved in SGLT2i-mediated cardiovascular protection.


Assuntos
Difosfato de Adenosina/farmacologia , Compostos Benzidrílicos/farmacologia , Plaquetas/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Glucosídeos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Ácidos Esteáricos/toxicidade , Apoptose/efeitos dos fármacos , Plaquetas/metabolismo , Plaquetas/patologia , Células Cultivadas , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Humanos , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/metabolismo
11.
Sci Rep ; 9(1): 19574, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863085

RESUMO

Acute myocardial infarction is primarily due to coronary atherosclerotic plaque rupture and subsequent thrombus formation. Platelets play a key role in the genesis and progression of both atherosclerosis and thrombosis. Since platelets are anuclear cells that inherit their mRNA from megakaryocyte precursors and maintain it unchanged during their life span, gene expression profiling at the time of an acute myocardial infarction provides information concerning the platelet gene expression preceding the coronary event. In ST-segment elevation myocardial infarction (STEMI), a gene-by-gene analysis of the platelet gene expression identified five differentially expressed genes: FKBP5, S100P, SAMSN1, CLEC4E and S100A12. The logistic regression model used to combine the gene expression in a STEMI vs healthy donors score showed an AUC of 0.95. The same five differentially expressed genes were externally validated using platelet gene expression data from patients with coronary atherosclerosis but without thrombosis. Platelet gene expression profile highlights five genes able to identify STEMI patients and to discriminate them in the background of atherosclerosis. Consequently, early signals of an imminent acute myocardial infarction are likely to be found by platelet gene expression profiling before the infarction occurs.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , Plaquetas/metabolismo , Infarto do Miocárdio/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteína S100A12/genética , Proteína S100A12/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
12.
Int J Biometeorol ; 63(9): 1209-1216, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31227888

RESUMO

Sulphurous thermal water inhalations have been traditionally used in the treatment of airway diseases. In vivo and in vitro studies reported that they ameliorate mucus rheology, mucociliary clearance and reduce inflammation. Cigarette smoking induces an inflammatory damage, with consequent remodeling of respiratory airways, which in turn affect pulmonary functions. Despite the anti-inflammatory effects of H2S are clinically documented in several airway inflammatory diseases, data on the effects of sulphurous thermal water treatment on pulmonary function and biomarkers of airways inflammation in smokers are still scant. Therefore, we investigated whether a conventional cycle of sulphurous thermal water inhalation produced changes in markers of respiratory inflammation and function. A cohort of 504 heavy current and former smokers underwent 10-day cycles of sulphurous thermal water inhalation. Pulmonary function and metabolic analyses on exhaled breath condensate were then performed at day 0 and after the 10-day treatment. Spirometric data did not change after spa therapy, while exhaled breath condensate analysis revealed that a single 10-day cycle of sulphurous water inhalation was sufficient to induce a statistically significant increase of citrulline levels along with a decrease in ornithine levels, thus shifting arginine metabolism towards a reduced nitric oxide production, i.e. an anti-inflammatory profile. Overall, sulphurous thermal water inhalation impacts on arginine catatabolic intermediates of airways cells, shifting their metabolic balance towards a reduction of the inflammatory activity, with potential benefits for smokers.


Assuntos
Testes Respiratórios , Fumantes , Administração por Inalação , Humanos , Óxido Nítrico , Enxofre
14.
Mol Cancer Res ; 16(1): 3-15, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021232

RESUMO

To form a proper mitotic spindle, centrosomes must be duplicated and driven poleward in a timely and controlled fashion. Improper timing of centrosome separation and errors in mitotic spindle assembly may lead to chromosome instability, a hallmark of cancer. Protein kinase C epsilon (PKCε) has recently emerged as a regulator of several cell-cycle processes associated with the resolution of mitotic catenation during the metaphase-anaphase transition and in regulating the abscission checkpoint. However, an engagement of PKCε in earlier (pre)mitotic events has not been addressed. Here, we now establish that PKCε controls prophase-to-metaphase progression by coordinating centrosome migration and mitotic spindle assembly in transformed cells. This control is exerted through cytoplasmic dynein function. Importantly, it is also demonstrated that the PKCε dependency of mitotic spindle organization is correlated with the nonfunctionality of the TOPO2A-dependent G2 checkpoint, a characteristic of many transformed cells. Thus, PKCε appears to become specifically engaged in a programme of controls that are required to support cell-cycle progression in transformed cells, advocating for PKCε as a potential cancer therapeutic target.Implications: The close relationship between PKCε dependency for mitotic spindle organization and the nonfunctionality of the TOPO2A-dependent G2 checkpoint, a hallmark of transformed cells, strongly suggests PKCε as a therapeutic target in cancer. Mol Cancer Res; 16(1); 3-15. ©2017 AACR.


Assuntos
Centrossomo/metabolismo , Proteína Quinase C-épsilon/metabolismo , Fuso Acromático/metabolismo , Humanos , Pontos de Checagem da Fase M do Ciclo Celular
15.
Ann Transl Med ; 5(13): 273, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28758099

RESUMO

BACKGROUND: Myelofibrosis (MF) is the most aggressive Philadelphia-negative chronic myeloproliferative neoplasm (MPN) with high morbidity and mortality due to thrombo-hemorrhagic complications and leukemic transformation. MF is characterized by profound alterations of megakaryocytopoiesis, with consequent abnormalities in platelet number and function. We recently showed that the overexpression of the oncoprotein PKCepsilon plays a key role in the aberrant differentiation of MF megakaryocyte clone and that its levels correlate with disease burden. Moreover, our group previously demonstrated that PKCepsilon is over-expressed in platelets from patients with acute myocardial infarction (MI) and accounts for their increased reactivity. On these bases, we investigated here the activation state and PKCepsilon expression of MF platelets, testing potential correlations with thrombotic risk and disease aggressiveness. METHODS: Platelets were isolated from peripheral blood samples of MF patients and healthy donors (HDs). Patients were stratified according to the IPSS/DIPSS risk category and history of cardiovascular events. Platelet activation was assessed by flow cytometry. PKCepsilon mRNA and protein levels were determined by real time-PCR and western blot. RESULTS: MF platelets circulate in an activated status and display significantly higher levels of PKCepsilon compared to HDs. In MF patients, PKCepsilon platelet levels were associated with high-risk disease as well as with a positive history of major cardiovascular events. CONCLUSIONS: PKCepsilon is configuring as the common denominator of neoplastic transformation and thrombus formation in MF. Overall, our data pinpoint PKCepsilon as a potential novel biomarker of disease aggressiveness and thrombotic risk in this hematologic neoplasm.

16.
Data Brief ; 11: 72-97, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28138507

RESUMO

The data included in this paper are associated with the research article entitled "Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria" (Paesano et al.) [1]. The article concerns the cytotoxic and genotoxic effects of CdS QDs in HepG2 cells and the mechanisms involved. In this dataset, changes in expression levels of candidate genes are reported, together with details concerning synthesis and properties of CdS QDs, additional information obtained through literature survey, measures of the mitochondrial membrane potential and the glutathione redox state.

17.
Int J Cardiol ; 228: 364-374, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27866029

RESUMO

BACKGROUND: With age, aortic valve cusps undergo varying degrees of sclerosis which, sometimes, can progress to calcific aortic valve stenosis (AVS). To perform a retrospective clinico-pathologic investigation in patients with calcific AVS. METHODS: We characterized and graded the structural remodeling in 236 aortic valves (200 tricuspid and 36 bicuspid) from patients with calcific AVS (148 males; average 72years); possible relationships between general/clinical/echocardiographic characteristics and the histopathologic changes were explored. Twenty autopsy aortic valves served as controls. In 40 cases, we also tested the immunohistochemical expression of metalloproteinases and cytokines, and characterized the inflammatory infiltrate. In 5 cases, we cultured cusp stem cells and explored their potential to differentiate into osteoblasts/adipocytes. RESULTS: AVS cusps showed structural remodeling as severe fibrosis (100%), calcific nodules (100%), neoangiogenesis (81%), inflammation (71%), bone metaplasia with or without hematopoiesis (6% and 53%, respectively), adipose metaplasia (16%), and cartilaginous metaplasia (7%). At multivariate analysis, AVS degree and interventricular septum thickness were the only predictors of remodeling (barring inflammation). All the tested metalloproteinases (except MMP-13) and cytokines were expressed in AVS cusps. Inflammation mainly consisted of B and T lymphocytes (CD4+/CD8+ cell ratio 3:1) and plasma cells. AVS changes were mostly different from typical atherosclerosis. Cultured mesenchymal cusp stem cells could differentiate into osteoblasts/adipocytes. CONCLUSIONS: Structural remodeling in AVS is peculiar and considerable, and is related to the severity of the disease. However, the different newly formed tissues-where "valvular interstitial cells" play a key role-and their well-known slow turnover suggest a reverse structural remodeling improbable.


Assuntos
Estenose da Valva Aórtica/mortalidade , Estenose da Valva Aórtica/cirurgia , Valva Aórtica/patologia , Calcinose/mortalidade , Calcinose/cirurgia , Causas de Morte , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/patologia , Autopsia , Biópsia por Agulha , Calcinose/diagnóstico por imagem , Calcinose/patologia , Estudos de Casos e Controles , Estudos de Coortes , Ecocardiografia/métodos , Feminino , Seguimentos , Implante de Prótese de Valva Cardíaca/métodos , Implante de Prótese de Valva Cardíaca/mortalidade , Humanos , Imuno-Histoquímica , Itália , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estudos Retrospectivos , Medição de Risco , Fatores Sexuais , Estatísticas não Paramétricas , Análise de Sobrevida , Resultado do Tratamento
18.
Toxicology ; 374: 18-28, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-27866839

RESUMO

Interaction of living organisms with quantum dots (QDs) is certainly more focused on environment and occupational exposure associated with production and release or disposal. Here, the transcription of genes involved in mitochondrial organization and function in HepG2 cells exposed to cadmium sulphide (CdS) QDs has been profiled to highlight biomarkers of exposure and effect to be tested for other cadmium based QDs. At low concentrations, exposure to CdS QDs induced only minor damage to nuclear DNA, and none to mitochondrial DNA. However, the stress caused an increase in the production of reactive oxygen species (ROS), which triggered the mitochondria-mediated intrinsic apoptotic pathway involving a cascade of transcriptomic events, finally prompting the activation of a rescue pathway. The transcriptomic analysis confirmed the involvement in the response to CdS QDs of genes related to apoptosis (AIFM2 and APAF1), oxidative stress response (OXR1 and AOX1) and autophagy (ATG3 and ATG7), as potential biomarkers. Other possible biomarkers specific for mitochondria function were LONP1 and HSPD1.


Assuntos
Compostos de Cádmio/toxicidade , Mitocôndrias/efeitos dos fármacos , Pontos Quânticos/toxicidade , Sulfetos/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores , Núcleo Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , Variações do Número de Cópias de DNA/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , Glutationa/metabolismo , Células Hep G2 , Humanos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
19.
Haematologica ; 101(7): 812-20, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27081176

RESUMO

A deeper understanding of the molecular events driving megakaryocytopoiesis and thrombopoiesis is essential to regulate in vitro and in vivo platelet production for clinical applications. We previously documented the crucial role of PKCε in the regulation of human and mouse megakaryocyte maturation and platelet release. However, since several data show that different PKC isoforms fulfill complementary functions, we targeted PKCε and PKCδ, which show functional and phenotypical reciprocity, at the same time as boosting platelet production in vitro. Results show that PKCδ, contrary to PKCε, is persistently expressed during megakaryocytic differentiation, and a forced PKCδ down-modulation impairs megakaryocyte maturation and platelet production. PKCδ and PKCε work as a functional couple with opposite roles on thrombopoiesis, and the modulation of their balance strongly impacts platelet production. Indeed, we show an imbalance of PKCδ/PKCε ratio both in primary myelofibrosis and essential thrombocythemia, featured by impaired megakaryocyte differentiation and increased platelet production, respectively. Finally, we demonstrate that concurrent molecular targeting of both PKCδ and PKCε represents a strategy for in vitro platelet factories.


Assuntos
Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/metabolismo , Trombopoese , Adulto , Idoso , Plaquetas/metabolismo , Diferenciação Celular/genética , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Megacariócitos/citologia , Megacariócitos/metabolismo , Pessoa de Meia-Idade , Mielofibrose Primária/sangue , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/metabolismo , Ligação Proteica , Proteína Quinase C-delta/genética , Proteína Quinase C-épsilon/genética , Trombocitemia Essencial/sangue , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/metabolismo , Trombopoese/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
20.
PLoS One ; 10(11): e0142891, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26571236

RESUMO

INTRODUCTION: The exclusion of circulating tumor cells (CTCs) that have lost epithelial antigens during the epithelial-to-mesenchymal transition (EMT) process by using Epithelial Cell Adhesion Molecule (EpCAM) based capture methods is still a matter of debate. In this study, cells obtained after depletion procedure from blood samples of squamous cell lung cancer (SQCLC) patients were identified based on morphology and characterized with the combination of FISH assessment and immunophenotypic profile. MATERIALS AND METHODS: Five mL blood samples, collected from 55 advanced SQCLC patients, were analyzed by a non-EpCAM-based capture method. After depletion of leukocytes and erythroid cells, the negative fraction was characterized by both FISH using a fibroblast growth factor receptor 1 (FGFR1) probe and by immunocytochemistry. Thirty healthy donors were also tested. RESULTS: Based on morphology (nuclear dimension ≥10 µm, shape and hypercromatic aspect) suspicious circulating cells clearly distinguishable from contaminant leukocytes were observed in 49/55 (89%) SQCLC patients. Thirty-four of the 44 (77%) samples evaluable for FGFR1 FISH showed ≥ 6 FGFR1 gene copy number on average per cell. Vimentin expression involved 43% (18/42) of pooled circulating SQCLC cells, whereas only 29% (14/48) were EpCAM positive. Confocal microscopy confirmed the localization of FGFR1 probe in suspicious circulating cells. Suspicious circulating elements were also observed in healthy donors and did not show any epithelial associated antigens. A significantly lower number of suspicious circulating cells in healthy donors compared to SQCLC patients was found. CONCLUSIONS: Among the heterogeneous cell population isolated by depletion procedure, the coexistence of cells with epithelial and/or mesenchymal phenotype suggests that EMT may participate to transendothelial invasion and migration of tumor cells in advanced SQCLC. The finding of cells with neither EpCAM or EMT phenotype, retrieved after non-EpCAM-based systems, underlines the presence of suspicious elements in the blood of both SQCLC patients and healthy donors. Further phenotyping and molecular analyses are necessary to fully characterize these circulating elements.


Assuntos
Antígenos de Neoplasias/metabolismo , Carcinoma de Células Escamosas/patologia , Moléculas de Adesão Celular/metabolismo , Separação Celular/métodos , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Molécula de Adesão da Célula Epitelial , Feminino , Dosagem de Genes , Humanos , Imuno-Histoquímica , Imunofenotipagem , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA