Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Opin Urol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105299

RESUMO

PURPOSE OF REVIEW: Stress urinary incontinence is a growing issue in ageing men, often following treatment for prostate cancer or bladder outflow obstruction. While implantable urological devices offer relief, infections are a significant concern. These infections can lead to device removal, negating the benefits and impacting patient outcomes. This review explores the risks and factors contributing to these infections and existing strategies to minimize them. These strategies encompass a multifaceted approach that considers patient-specific issues, environmental issues, device design and surgical techniques. However, despite these interventions, there is still a pressing need for further advancements in device infection prevention. RECENT FINDINGS: Faster diagnostics, such as Raman spectroscopy, could enable early detection of infections. Additionally, biocompatible adjuncts like ultrasound-responsive microbubbles hold promise for enhanced drug delivery and biofilm disruption, particularly important as antibiotic resistance rises worldwide. SUMMARY: By combining advancements in diagnostics, device design, and patient-specific surgical techniques, we can create a future where implantable urological devices offer men a significant improvement in quality of life with minimal infection risk.

2.
Proc Inst Mech Eng H ; 238(6): 588-597, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39077929

RESUMO

Technological advancements in the medical field are often slow and expensive, sometimes due to complexities associated with pre-clinical testing of medical devices and implants. There is therefore a growing need for new test beds that can mimic more closely the in vivo environment of physiological systems. In the present study, a novel bladder model was designed and fabricated with the aim of providing a pre-clinical testing platform for urological stents and catheters. The model is collapsible, has a Young's modulus that is comparable to a biological bladder, and can be actuated on-demand to enable voiding. Moreover, the developed fabrication technique provides versatility to adjust the model's shape, size, and thickness, through a rapid and relatively inexpensive process. When compared to a biological bladder, there is a significant difference in compliance; however, the model exhibits cystometry profiles during priming and voiding that are qualitatively comparable to a biological bladder. The developed bladder model has therefore potential for future usage in urological device testing; however, improvements are required to more closely replicate the architecture and relevant flow metrics of a physiological bladder.


Assuntos
Bexiga Urinária , Bexiga Urinária/fisiologia , Órgãos Artificiais , Modelos Biológicos , Humanos , Desenho de Equipamento
3.
Nitric Oxide ; 147: 42-50, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631610

RESUMO

Nitric oxide (NO) donating drugs such as organic nitrates have been used to treat cardiovascular diseases for more than a century. These donors primarily produce NO systemically. It is however sometimes desirable to control the amount, location, and time of NO delivery. We present the design of a novel pH-sensitive NO release system that is achieved by the synthesis of dipeptide diphenylalanine (FF) and graphene oxide (GO) co-assembled hybrid nanosheets (termed as FF@GO) through weak molecular interactions. These hybrid nanosheets were characterised by using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, zeta potential measurements, X-ray photoelectron spectroscopy, scanning and transmission electron microscopies. The weak molecular interactions, which include electrostatic, hydrogen bonding and π-π stacking, are pH sensitive due to the presence of carboxylic acid and amine functionalities on GO and the dipeptide building blocks. Herein, we demonstrate that this formulation can be loaded with NO gas with the dipeptide acting as an arresting agent to inhibit NO burst release at neutral pH; however, at acidic pH it is capable of releasing NO at the rate of up to 0.6 µM per minute, comparable to the amount of NO produced by healthy endothelium. In conclusion, the innovative conjugation of dipeptide with graphene can store and release NO gas under physiologically relevant concentrations in a pH-responsive manner. pH responsive NO-releasing organic-inorganic nanohybrids may prove useful for the treatment of cardiovascular diseases and other pathologies.


Assuntos
Grafite , Nanoestruturas , Óxido Nítrico , Grafite/química , Concentração de Íons de Hidrogênio , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nanoestruturas/química , Humanos , Dipeptídeos/química , Fenilalanina/química , Fenilalanina/análogos & derivados
4.
Biomaterials ; 305: 122448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218121

RESUMO

Gas-loaded nanobubbles have potential as a method of oxygen delivery to increase tumour oxygenation and therapeutically alleviate tumour hypoxia. However, the mechanism(s) whereby oxygen-loaded nanobubbles increase tumour oxygenation are unknown; with their calculated oxygen-carrying capacity being insufficient to explain this effect. Intra-tumoural hypoxia is a prime therapeutic target, at least partly due to hypoxia-dependent stimulation of the formation and function of bone-resorbing osteoclasts which establish metastatic cells in bone. This study aims to investigate potential mechanism(s) of oxygen delivery and in particular the possible use of oxygen-loaded nanobubbles in preventing bone metastasis via effects on osteoclasts. Lecithin-based nanobubbles preferentially interacted with phagocytic cells (monocytes, osteoclasts) via a combination of lipid transfer, clathrin-dependent endocytosis and phagocytosis. This interaction caused general suppression of osteoclast differentiation via inhibition of cell fusion. Additionally, repeat exposure to oxygen-loaded nanobubbles inhibited osteoclast formation to a greater extent than nitrogen-loaded nanobubbles. This gas-dependent effect was driven by differential effects on the fusion of mononuclear precursor cells to form pre-osteoclasts, partly due to elevated potentiation of RANKL-induced ROS by nitrogen-loaded nanobubbles. Our findings suggest that oxygen-loaded nanobubbles could represent a promising therapeutic strategy for cancer therapy; reducing osteoclast formation and therefore bone metastasis via preferential interaction with monocytes/macrophages within the tumour and bone microenvironment, in addition to known effects of directly improving tumour oxygenation.


Assuntos
Neoplasias Ósseas , Reabsorção Óssea , Humanos , Osteoclastos , Oxigênio/farmacologia , Diferenciação Celular , Neoplasias Ósseas/patologia , Hipóxia , Nitrogênio/farmacologia , Ligante RANK , Microambiente Tumoral
5.
ACS Biomater Sci Eng ; 9(10): 5912-5923, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747762

RESUMO

Microbubbles utilize high-frequency oscillations under ultrasound stimulation to induce a range of therapeutic effects in cells, often through mechanical stimulation and permeabilization of cells. One of the largest challenges remaining in the field is the characterization of interactions between cells and microbubbles at therapeutically relevant frequencies. Technical limitations, such as employing sufficient frame rates and obtaining sufficient image resolution, restrict the quantification of the cell's mechanical response to oscillating microbubbles. Here, a novel methodology was developed to address many of these limitations and improve the image resolution of cell-microbubble interactions at high frame rates. A compact acoustic device was designed to house cells and microbubbles as well as a therapeutically relevant acoustic field while being compatible with a Shimadzu HPV-X camera. Cell viability tests confirmed the successful culture and proliferation of cells, and the attachment of DSPC- and cationic DSEPC-microbubbles to osteosarcoma cells was quantified. Microbubble oscillation was observed within the device at a frame rate of 5 million FPS, confirming suitable acoustic field generation and ultra high-speed image capture. High spatial resolution in these images revealed observable deformation in cells following microbubble oscillation and supported the first use of digital image correlation for strain quantification in a single cell. The novel acoustic device provided a simple, effective method for improving the spatial resolution of cell-microbubble interaction images, presenting the opportunity to develop an understanding of the mechanisms driving the therapeutic effects of oscillating microbubbles upon ultrasound exposure.


Assuntos
Acústica , Microbolhas , Células Cultivadas
6.
Ultrasound Med Biol ; 48(9): 1888-1898, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798625

RESUMO

The aim of this research was to explore the interaction between ultrasound-activated microbubbles (MBs) and Pseudomonas aeruginosa biofilms, specifically the effects of MB concentration, ultrasound exposure and substrate properties on bactericidal efficacy. Biofilms were grown using a Centre for Disease Control (CDC) bioreactor on polypropylene or stainless-steel coupons as acoustic analogues for soft and hard tissue, respectively. Biofilms were treated with different concentrations of phospholipid-shelled MBs (107-108 MB/mL), a sub-inhibitory concentration of gentamicin (4 µg/mL) and 1-MHz ultrasound with a continuous or pulsed (100-kHz pulse repetition frequency, 25% duty cycle, 0.5-MPa peak-to-peak pressure) wave. The effect of repeated ultrasound exposure with intervals of either 15- or 60-min was also investigated. With polypropylene coupons, the greatest bactericidal effect was achieved with 2 × 5 min of pulsed ultrasound separated by 60 min and a microbubble concentration of 5 × 107 MBs/mL. A 0.76 log (83%) additional reduction in the number of bacteria was achieved compared with the use of an antibiotic alone. With stainless-steel coupons, a 67% (0.46 log) reduction was obtained under the same exposure conditions, possibly due to enhancement of a standing wave field which inhibited MB penetration in the biofilm. These findings demonstrate the importance of treatment parameter selection in antimicrobial applications of MBs and ultrasound in different tissue environments.


Assuntos
Microbolhas , Pseudomonas aeruginosa , Acústica , Antibacterianos/farmacologia , Biofilmes , Impedância Elétrica , Gentamicinas/farmacologia , Polipropilenos/farmacologia , Aço Inoxidável/farmacologia
7.
WIREs Mech Dis ; 13(6): e1523, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34730288

RESUMO

The upper urinary tract (UUT) consists of kidneys and ureters, and is an integral part of the human urogenital system. Yet malfunctioning and complications of the UUT can happen at all stages of life, attributed to reasons such as congenital anomalies, urinary tract infections, urolithiasis and urothelial cancers, all of which require urological interventions and significantly compromise patients' quality of life. Therefore, many models have been developed to address the relevant scientific and clinical challenges of the UUT. Of all approaches, fluid mechanical modeling serves a pivotal role and various methods have been employed to develop physiologically meaningful models. In this article, we provide an overview on the historical evolution of fluid mechanical models of UUT that utilize theoretical, computational, and experimental approaches. Descriptions of the physiological functionality of each component are also given and the mechanical characterizations associated with the UUT are provided. As such, it is our aim to offer a brief summary of the current knowledge of the subject, and provide a comprehensive introduction for engineers, scientists, and clinicians who are interested in the field of fluid mechanical modeling of UUT. This article is categorized under: Cancer > Biomedical Engineering Infectious Diseases > Biomedical Engineering Reproductive System Diseases > Biomedical Engineering.


Assuntos
Carcinoma de Células de Transição , Neoplasias Renais , Ureter , Neoplasias da Bexiga Urinária , Humanos , Qualidade de Vida
8.
Micromachines (Basel) ; 11(4)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32295085

RESUMO

Obstructions of the ureter lumen can originate from intrinsic or extrinsic factors, such as kidney stones, tumours, or strictures. These can affect the physiological flow of urine from the kidneys to the bladder, potentially causing infection, pain, and kidney failure. To overcome these complications, ureteral stents are often deployed clinically in order to temporarily re-establish urinary flow. Despite their clinical benefits, stents are prone to encrustation and biofilm formation that lead to reduced quality of life for patients; however, the mechanisms underlying the formation of crystalline biofilms in stents are not yet fully understood. In this study, we developed microfluidic-based devices replicating the urodynamic field within different configurations of an occluded and stented ureter. We employed computational fluid dynamic simulations to characterise the flow dynamic field within these models and investigated bacterial attachment (Pseudomonas fluorescens) by means of crystal violet staining and fluorescence microscopy. We identified the presence of hydrodynamic cavities in the vicinity of a ureteric occlusion, which were characterised by low levels of wall shear stress (WSS < 40 mPa), and observed that initiation of bacterial attachment occurred in these specific regions of the stented ureter. Notably, the bacterial coverage area was directly proportional to the number of cavities present in the model. Fluorescence microscopy confirmed that the number density of bacteria was greater within cavities (3 bacteria·mm-2) when compared to side-holes of the stent (1 bacterium·mm-2) or its luminal surface (0.12·bacteria mm-2). These findings informed the design of a novel technological solution against bacterial attachment, which reduces the extent of cavity flow and increases wall shear stress over the stent's surface.

9.
Ultrason Sonochem ; 60: 104782, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31539725

RESUMO

Ultrasound-induced cavitation has been used as a tool of enhancing extravasation and tissue penetration of anticancer agents in tumours. Initiating cavitation in tissue however, requires high acoustic intensities that are neither safe nor easy to achieve with current clinical systems. The use of cavitation nuclei can however lower the acoustic intensities required to initiate cavitation and the resulting bio-effects in situ. Microbubbles, solid gas-trapping nanoparticles, and phase shift nanodroplets are some examples in a growing list of proposed cavitation nuclei. Besides the ability to lower the cavitation threshold, stability, long circulation times, biocompatibility and biodegradability, are some of the desirable characteristics that a clinically applicable cavitation agent should possess. In this study, we present a novel formulation of ultrasound-triggered phase transition sub-micrometer sized nanodroplets (~400 nm) stabilised with a biocompatible polymer, polydopamine (PDA). PDA offers some important benefits: (1) facile fabrication, as dopamine monomers are directly polymerised on the nanodroplets, (2) high polymer biocompatibility, and (3) ease of functionalisation with other molecules such as drugs or targeting species. We demonstrate that the acoustic intensities required to initiate inertial cavitation can all be achieved with existing clinical ultrasound systems. Cell viability and haemolysis studies show that nanodroplets are biocompatible. Our results demonstrate the great potential of PDA nanodroplets as an acoustically active nanodevice, which is highly valuable for biomedical applications including drug delivery and treatment monitoring.

10.
Transl Androl Urol ; 8(Suppl 4): S436-S441, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31656749

RESUMO

Urological diseases such as tumours, kidney stones, or strictures in the ureter can lead to a number of health consequences, including life-threatening complications. Ureteral stents have been widely used as a valid solution to restore compromised urological function. Despite their clinical success, stents are subject to failure due to encrustation and biofilm formation, potentially leading to urinary tract infection. The current review focuses on recent advancements in ureteral stent technology, which have been reported in recent scientific journals or patents. Web of Science and Google Scholar have been used as a search engine to perform this review, using the keywords "Ureteral + Stent + Design", "Ureteral + Stent + Material + Coating", "Ureteric + Stent" and "Ureteral + Stent". A significant proportion of technological developments has focused on innovating the stent design to overcome migration and urinary reflux, as well as investigating novel materials and coatings to prevent biofilm formation, such as poly(N,N-dimethylacrylamide) (PDMMA) and swellable polyethylene glycol diacrylate (PEGDA). Biodegradable ureteral stents (BUS) have also emerged as a new generation of endourological devices, overcoming the "forgotten stent syndrome" and reducing healthcare costs. Moreover, efforts have been made to develop pre-clinical test methods, both experimental and computational, which could be employed as a screening platform to inform the design of novel stent technologies.

11.
Drug Deliv Transl Res ; 8(2): 342-356, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28299722

RESUMO

Microbubbles are currently in clinical use as ultrasound contrast agents and under active investigation as mediators of ultrasound therapy. To improve the theranostic potential of microbubbles, nanoparticles can be attached to the bubble shell for imaging, targeting and/or enhancement of acoustic response. Existing methods for fabricating particle-loaded bubbles, however, require the use of polymers, oil layers or chemical reactions for particle incorporation; embed/attach the particles that can reduce echogenicity; impair biocompatibility; and/or involve multiple processing steps. Here, we describe a simple method to embed nanoparticles in a phospholipid-coated microbubble formulation that overcomes these limitations. Magnetic nanoparticles are used to demonstrate the method with a range of different microbubble formulations. The size distribution and yield of microbubbles are shown to be unaffected by the addition of the particles. We further show that the microbubbles can be retained against flow using a permanent magnet, can be visualised by both ultrasound and magnetic resonance imaging (MRI) and can be used to transfect SH-SY5Y cells with fluorescent small interfering RNA under the application of a magnetic field and ultrasound field.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/química , Microbolhas , Linhagem Celular Tumoral , Meios de Contraste , Composição de Medicamentos , Corantes Fluorescentes/administração & dosagem , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Tamanho da Partícula , Fosfolipídeos/administração & dosagem , Fosfolipídeos/química , RNA Interferente Pequeno/administração & dosagem , Ultrassonografia
12.
ACS Omega ; 2(3): 994-1002, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28393132

RESUMO

Giant unilamellar vesicles (GUVs) are well-established model systems for studying membrane structure and dynamics. Electroformation, also referred to as electroswelling, is one of the most prevalent methods for producing GUVs, as it enables modulation of the lipid hydration process to form relatively monodisperse, defect-free vesicles. Currently, however, it is expensive and time-consuming compared with other methods. In this study, we demonstrate that 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine GUVs can be prepared readily at a fraction of the cost on stainless steel electrodes, such as commercially available syringe needles, without any evidence of lipid oxidation or hydrolysis.

13.
Adv Healthc Mater ; 6(8)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28195673

RESUMO

Small interfering RNA (siRNA) has significant therapeutic potential but its clinical translation has been severely inhibited by a lack of effective delivery strategies. Previous work has demonstrated that perfluorocarbon nanodroplets loaded with magnetic nanoparticles can facilitate the intracellular delivery of a conventional chemotherapeutic drug. The aim of this study is to determine whether a similar agent can provide a means of delivering siRNA, enabling efficient transfection without degradation of the molecule. Chitosan-deoxycholic acid nanoparticles containing perfluoropentane and iron oxide (d 0 = 7.5 ± 0.35 nm) with a mean hydrodynamic diameter of 257.6 ± 10.9 nm are produced. siRNA (AllStars Hs cell death siRNA) is electrostatically bound to the particle surface and delivery to lung cancer cells and breast cancer cells is investigated with and without ultrasound exposure (500 kHz, 1 MPa peak-to-peak focal pressure, 40 cycles per burst, 1 kHz pulse repetition frequency, 10 s duration). The results show that siRNA functionality is not impaired by the treatment protocol and that the nanodroplets are able to successfully promote siRNA uptake, leading to significant apoptosis (52.4%) 72 h after ultrasound treatment.


Assuntos
Quitosana/química , Ácido Desoxicólico/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , RNA Interferente Pequeno , Células A549 , Humanos , Células MCF-7 , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia
14.
Adv Healthc Mater ; 6(9)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28218823

RESUMO

Therapeutic embolotherapy is the deliberate occlusion of a blood vessel within the body, which can be for the prevention of internal bleeding, stemming of flow through an arteriovenous malformation, or occlusion of blood vessels feeding a tumor. This is achieved using a wide selection of embolic devices such as balloons, coils, gels, glues, and particles. Particulate embolization is often favored for blocking smaller vessels, particularly within hypervascularized tumors, as they are available in calibrated sizes and can be delivered distally via microcatheters for precise occlusion with associated locoregional drug delivery. Embolic performance has been traditionally evaluated using animal models, but with increasing interest in the 3R's (replacement, reduction, refinement), manufacturers, regulators, and clinicians have shown interest in the development of more sophisticated in vitro methods for evaluation and prediction of in vivo performance. Herein the current progress in developing bespoke techniques incorporating physical handling, fluid dynamics, occlusive behavior, and sustained drug elution kinetics within vascular systems is reviewed. While it is necessary to continue to validate the safety of such devices in vivo, great strides have been made in the development of bench tests that better predict the behavior of these products aligned with the principles of the 3R's.


Assuntos
Embolização Terapêutica/métodos , Microesferas , Animais , Humanos
15.
Adv Mater ; 27(37): 5484-92, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26265592
16.
J Control Release ; 214: 62-75, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26160306

RESUMO

Anticancer treatment using embolic drug-eluting beads (DEBs) has shown multifarious advantages compared to systemic chemotherapy. However, there is a growing need for a better understanding of the physical parameters governing drug-elution from embolic devices under physiologically relevant fluidic conditions. In the present study, we investigated the spatiotemporal dynamics of doxorubicin hydrochloride elution from drug-loaded hydrogel embolic beads within a microfluidic device consisting of a network of interconnected microchannels which replicates the architectural properties of microvascular systems. Drug-elution has been investigated experimentally at a single-bead level, using in-house developed microscopy- and spectrofluorimetry-based methods. Results demonstrated that the kinetics of drug-elution and the amount of eluted drug strongly depended on the location of the embolic event within the embolised channel (e.g. fractional amount of eluted drug after 3h was equal to ~0.2 and ~0.6 for completely-confined and partially-confined bead, respectively). Drug-elution from partially-confined bead showed a counterintuitive dependence on the local Reynolds number (and thus on the mean fluid velocity), as a result of dynamic changes in bead compressibility causing the displacement of the bead from the primary embolic site. Conversely, the kinetics of drug-elution from fully-confined bead was less affected by the local Reynolds number and bead displayed faster elution from the surface area exposed to the systemic flow, which was associated with the formation of fluid eddies nearby the bead post embolisation.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Quimioembolização Terapêutica/métodos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Algoritmos , Capilares/metabolismo , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Injeções Intravenosas , Cinética , Dispositivos Lab-On-A-Chip , Microfluídica , Microesferas , Modelos Biológicos , Espectrometria de Fluorescência
17.
RSC Adv ; 5(101): 83206-83216, 2015 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29456838

RESUMO

We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint.

18.
Adv Drug Deliv Rev ; 65(11-12): 1496-532, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23933616

RESUMO

In recent years, advancements in the fields of microfluidic and lab-on-a-chip technologies have provided unique opportunities for the implementation of nanomaterial production processes owing to the miniaturisation of the fluidic environment. It has been demonstrated that microfluidic reactors offer a range of advantages compared to conventional batch reactors, including improved controllability and uniformity of nanomaterial characteristics. In addition, the fast mixing achieved within microchannels, and the predictability of the laminar flow conditions, can be leveraged to investigate the nanomaterial formation dynamics. In this article recent developments in the field of microfluidic production of nanomaterials for drug delivery applications are reviewed. The features that make microfluidic reactors a suitable technological platform are discussed in terms of controllability of nanomaterials production. An overview of the various strategies developed for the production of organic nanoparticles and colloidal assemblies is presented, focusing on those nanomaterials that could have an impact on nanomedicine field such as drug nanoparticles, polymeric micelles, liposomes, polymersomes, polyplexes and hybrid nanoparticles. The effect of microfluidic environment on nanomaterials formation dynamics, as well as the use of microdevices as tools for nanomaterial investigation is also discussed.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Nanomedicina/métodos , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos , Micelas , Nanopartículas , Nanoestruturas , Compostos Orgânicos/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Polímeros/química
19.
Int J Nanomedicine ; 7: 307-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22287841

RESUMO

This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH), based on Pluronic(®) block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially γ-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF) accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating α-globin gene expression, which is responsible for the clinical symptoms of ß-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying ß-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol for ß-thalassemia.


Assuntos
Química Farmacêutica/métodos , Micelas , Microfluídica , Plicamicina/análogos & derivados , Polímeros , Talassemia beta/tratamento farmacológico , Análise de Variância , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Células Precursoras Eritroides , Humanos , Células K562/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Plicamicina/administração & dosagem , Plicamicina/química , Reprodutibilidade dos Testes
20.
Lab Chip ; 11(10): 1776-85, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21472178

RESUMO

This paper describes a method for the production of alginate microfibres using glass-based microfluidic chips fabricated by a photolithography-wet etching procedure. The main focus of the work is the fabrication of a cell containing multifunctional microfibres which have great potential for applications in drug release formulations and tissue engineering scaffolds (to guide the regeneration of tissues in predefined sizes and shapes) providing cell structural support and immunoisolation. The key parameters, which critically influence the formation of microfibres and their geometries, were identified by a classical intuitive approach COST (Changing One Separate factor a Time). In particular, their effects on the microfibre diameter were investigated, which are directly associated with their functionalities relating to the implantation site, the nutrient availability and diffusion/transport of oxygen, essential nutrients, growth factors, metabolic waste and secretory products. The interplay between the alginate solution concentration, pumping rate and gelling bath concentration in controlling the diameter of the produced microfibres was investigated with a statistical approach by means of a "design of the experiments" (DoEs) optimization and screening. Finally, the processing impacts on cell viability, the cellular effect of wall thickness consistency and the spatial distribution of cells within the alginate microfibre were examined. We provide an approach for the production of alginate microfibres with controlled shape and content, which could be further developed for scaling up and working towards FDA approval.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Engenharia Tecidual , Alginatos/química , Linhagem Celular Tumoral , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Técnicas Analíticas Microfluídicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA