Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35883376

RESUMO

Each year, tens of thousands of people worldwide die of end-stage organ failure due to the limited availability of organs for use in transplantation. To meet this clinical demand, one of the last frontiers of regenerative medicine is the generation of humanized organs in pigs from pluripotent stem cells (PSCs) via blastocyst complementation. For this, organ-disabled pig models are needed. As endothelial cells (ECs) play a critical role in xenotransplantation rejection in every organ, we aimed to produce hematoendothelial-disabled pig embryos targeting the master transcription factor ETV2 via CRISPR-Cas9-mediated genome modification. In this study, we designed five different guide RNAs (gRNAs) against the DNA-binding domain of the porcine ETV2 gene, which were tested on porcine fibroblasts in vitro. Four out of five guides showed cleavage capacity and, subsequently, these four guides were microinjected individually as ribonucleoprotein complexes (RNPs) into one-cell-stage porcine embryos. Next, we combined the two gRNAs that showed the highest targeting efficiency and microinjected them at higher concentrations. Under these conditions, we significantly improved the rate of biallelic mutation. Hence, here, we describe an efficient one-step method for the generation of hematoendothelial-disabled pig embryos via CRISPR-Cas9 microinjection in zygotes. This model could be used in experimentation related to the in vivo generation of humanized organs.

2.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502036

RESUMO

The success of cell therapy for the treatment of myocardial infarction depends on finding novel approaches that can substantially implement the engraftment of the transplanted cells. In order to enhance cell engraftment, most studies have focused on the pretreatment of transplantable cells. Here we have considered an alternative approach that involves the preconditioning of infarcted heart tissue to reduce endogenous cell activity and thus provide an advantage to our exogenous cells. This treatment is routinely used in other tissues such as bone marrow and skeletal muscle to improve cell engraftment, but it has never been taken in cardiac tissue. To avoid long-term cardiotoxicity induced by full heart irradiation we developed a rat model of a catheter-based heart irradiation system to locally impact a delimited region of the infarcted cardiac tissue. As proof of concept, we transferred ZsGreen+ iPSCs in the infarcted heart, due to their ease of use and detection. We found a very significant increase in cell engraftment in preirradiated rats. In this study, we demonstrate for the first time that preconditioning the infarcted cardiac tissue with local irradiation can substantially enhance cell engraftment.


Assuntos
Braquiterapia/métodos , Precondicionamento Isquêmico/métodos , Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Coração/efeitos da radiação , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
3.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114756

RESUMO

Direct cardiac reprogramming has emerged as a novel therapeutic approach to treat and regenerate injured hearts through the direct conversion of fibroblasts into cardiac cells. Most studies have focused on the reprogramming of fibroblasts into induced cardiomyocytes (iCMs). The first study in which this technology was described, showed that at least a combination of three transcription factors, GATA4, MEF2C and TBX5 (GMT cocktail), was required for the reprogramming into iCMs in vitro using mouse cells. However, this was later demonstrated to be insufficient for the reprogramming of human cells and additional factors were required. Thereafter, most studies have focused on implementing reprogramming efficiency and obtaining fully reprogrammed and functional iCMs, by the incorporation of other transcription factors, microRNAs or small molecules to the original GMT cocktail. In this respect, great advances have been made in recent years. However, there is still no consensus on which of these GMT-based varieties is best, and robust and highly reproducible protocols are still urgently required, especially in the case of human cells. On the other hand, apart from CMs, other cells such as endothelial and smooth muscle cells to form new blood vessels will be fundamental for the correct reconstruction of damaged cardiac tissue. With this aim, several studies have centered on the direct reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs) able to give rise to all myocardial cell lineages. Especially interesting are reports in which multipotent and highly expandable mouse iCPCs have been obtained, suggesting that clinically relevant amounts of these cells could be created. However, as of yet, this has not been achieved with human iCPCs, and exactly what stage of maturity is appropriate for a cell therapy product remains an open question. Nonetheless, the major concern in regenerative medicine is the poor retention, survival, and engraftment of transplanted cells in the cardiac tissue. To circumvent this issue, several cell pre-conditioning approaches are currently being explored. As an alternative to cell injection, in vivo reprogramming may face fewer barriers for its translation to the clinic. This approach has achieved better results in terms of efficiency and iCMs maturity in mouse models, indicating that the heart environment can favor this process. In this context, in recent years some studies have focused on the development of safer delivery systems such as Sendai virus, Adenovirus, chemical cocktails or nanoparticles. This article provides an in-depth review of the in vitro and in vivo cardiac reprograming technology used in mouse and human cells to obtain iCMs and iCPCs, and discusses what challenges still lie ahead and what hurdles are to be overcome before results from this field can be transferred to the clinical settings.


Assuntos
Técnicas de Reprogramação Celular/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Fatores de Transcrição/metabolismo , Animais , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Reprogramação Celular , Meios de Cultura/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
4.
Stem Cell Res ; 21: 1-4, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28677526

RESUMO

We generated ATCi-MF1 induced pluripotent stem (iPS) cell line from Macaca fascicularis adult skin fibroblasts using non-integrative Sendai viruses carrying OCT3/4, KLF4, SOX2 and c-MYC. Once established, ATCi-MF1 cells present a normal karyotype, are Sendai virus-free and express pluripotency associated markers. Microsatellite markers analysis confirmed the origin of the iPS cells from the parental fibroblasts. Pluripotency was tested with the in vivo teratoma formation assay. ATCi-MF1 cell line may be a useful primate iPS cell model to test different experimental conditions where the use of human cells can imply ethical issues, as microinjection of pluripotent stem cells in pre-implantational embryos.


Assuntos
Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Vírus Sendai , Pele/metabolismo , Fatores de Transcrição , Transdução Genética , Animais , Linhagem Celular , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Macaca fascicularis , Pele/citologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
5.
Stem Cell Reports ; 7(4): 602-618, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27666791

RESUMO

Induced pluripotent stem cells (iPSCs) are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC generation from acute myeloid or lymphoid leukemias (ALL) has not been achieved. We attempted to generate iPSCs from different subtypes of B-ALL to address the developmental impact of leukemic fusion genes. OKSM(L)-expressing mono/polycistronic-, retroviral/lentiviral/episomal-, and Sendai virus vector-based reprogramming strategies failed to render iPSCs in vitro and in vivo. Addition of transcriptomic-epigenetic reprogramming "boosters" also failed to generate iPSCs from B cell blasts and B-ALL lines, and when iPSCs emerged they lacked leukemic fusion genes, demonstrating non-leukemic myeloid origin. Conversely, MLL-AF4-overexpressing hematopoietic stem cells/B progenitors were successfully reprogrammed, indicating that B cell origin and leukemic fusion gene were not reprogramming barriers. Global transcriptome/DNA methylome profiling suggested a developmental/differentiation refractoriness of MLL-rearranged B-ALL to reprogramming into pluripotency.


Assuntos
Transdiferenciação Celular/genética , Reprogramação Celular , Rearranjo Gênico , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Animais , Biomarcadores , Linhagem Celular Transformada , Linhagem Celular Tumoral , Análise por Conglomerados , Metilação de DNA , Expressão Gênica , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Xenoenxertos , Humanos , Camundongos , Células Progenitoras Mieloides/metabolismo , Proteínas de Fusão Oncogênica/genética , Fenótipo , Células Precursoras de Linfócitos B/metabolismo , Transcriptoma , Translocação Genética
6.
Stem Cell Res ; 16(3): 617-21, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27346195

RESUMO

Mef2c Anterior Heart Field (AHF) enhancer is activated during embryonic heart development and it is expressed in multipotent cardiovascular progenitors (CVP) giving rise to endothelial and myocardial components of the outflow tract, right ventricle and ventricular septum. Here we have generated iPSC from transgenic Mef2c-AHF-Cre x Ai6(RCLZsGreen) mice. These iPSC will provide a novel tool to investigate the AHF-CVP and their cell progeny.


Assuntos
Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Miocárdio/citologia , Animais , Diferenciação Celular , Reprogramação Celular , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Genótipo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Fatores de Transcrição MEF2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Teratoma/metabolismo , Teratoma/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Stem Cell Reports ; 3(6): 1118-31, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25458894

RESUMO

Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus. Upon SOX2 and c-MYC expression, CD133-positive cord blood cells rapidly adopt a neuroepithelial morphology and exhibit high expansion capacity. Under defined neurogenic culture conditions, they express mature neuronal markers and fire spontaneous action potentials that can be modulated with neurotransmitters. SOX2 and c-MYC are also sufficient to convert peripheral blood mononuclear cells into iNCs. However, the conversion process is less efficient and resulting iNCs have limited expansion capacity and electrophysiological activity upon differentiation. Our study demonstrates rapid and efficient generation of iNCs from hematopoietic cells while underscoring the impact of target cells on conversion efficiency.


Assuntos
Transdiferenciação Celular , Leucócitos Mononucleares/citologia , Neurônios/citologia , Antígeno AC133 , Antígenos CD/metabolismo , Proliferação de Células , Células Cultivadas , Senescência Celular/genética , Sangue Fetal/citologia , Expressão Gênica , Perfilação da Expressão Gênica , Glicoproteínas/metabolismo , Humanos , Imunofenotipagem , Leucócitos Mononucleares/metabolismo , Potenciais da Membrana , Neurônios/metabolismo , Peptídeos/metabolismo , Fenótipo
8.
Cell Stem Cell ; 11(2): 179-94, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22862944

RESUMO

Many signals must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. However, the exact molecular regulatory mechanisms remain elusive. To unravel the essential internal and external signals required for sustaining the ESC state, we conducted a short hairpin (sh) RNA screen of 104 ESC-associated phosphoregulators. Depletion of one such molecule, aurora kinase A (Aurka), resulted in compromised self-renewal and consequent differentiation. By integrating global gene expression and computational analyses, we discovered that loss of Aurka leads to upregulated p53 activity that triggers ESC differentiation. Specifically, Aurka regulates pluripotency through phosphorylation-mediated inhibition of p53-directed ectodermal and mesodermal gene expression. Phosphorylation of p53 not only impairs p53-induced ESC differentiation but also p53-mediated suppression of iPSC reprogramming. Our studies demonstrate an essential role for Aurka-p53 signaling in the regulation of self-renewal, differentiation, and somatic cell reprogramming.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Aurora Quinase A , Aurora Quinases , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Células-Tronco Pluripotentes/citologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Xenopus
9.
Cell Signal ; 19(4): 844-54, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17158029

RESUMO

Interferon-alpha (IFN-alpha) has been used for the last 20 years in the maintenance therapy of multiple myeloma (MM), though it is only effective in some patients. Congruent with this, IFN-alpha induces apoptosis in some MM cell lines. Understanding the mechanism of IFN-alpha-induced apoptosis could be useful in establishing criteria of eligibility for therapy. Here we show that IFN-alpha-induced apoptosis in the MM cell lines U266 and H929 was completely blocked by a specific inhibitor of Jak1. The mTOR inhibitor rapamycin mitigated apoptosis in U266 but potentiated it in H929 cells. IFN-alpha induced PS exposure, DeltaPsi(m) loss and pro-apoptotic conformational changes of Bak, but not of Bax, and was fully prevented by Mcl-1 overexpression in U266 cells. IFN-alpha treatment caused the release of cytochrome c from mitochondria to cytosol and consequently, a limited proteolytic processing of caspases. Apoptosis induced by IFN-alpha was only slightly prevented by caspase inhibitors. Levels of the BH3-only proteins PUMA and Bim increased during IFN-alpha treatment. Bim increase and apoptosis was prevented by transfection with the siRNA for Bim. PUMA-siRNA transfection reduced electroporation-induced apoptosis but had no effect on apoptosis triggered by IFN-alpha. The potentiating effect of rapamycin on apoptosis in H929 cells was associated to an increase in basal and IFN-alpha-induced Bim levels. Our results indicate that IFN-alpha causes apoptosis in myeloma cells through a moderate triggering of the mitochondrial route initiated by Bim and that mTOR inhibitors may be useful in IFN-alpha maintenance therapy of certain MM patients.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Interferon-alfa/farmacologia , Janus Quinase 1/metabolismo , Proteínas de Membrana/metabolismo , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas/metabolismo , Sirolimo/farmacologia , Fator de Indução de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Caspases/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citocromos c/metabolismo , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Glutationa/farmacologia , Humanos , Janus Quinase 1/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mieloma Múltiplo/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
10.
Cancer Res ; 66(11): 5781-9, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16740717

RESUMO

Multiple myeloma represents an incurable disease, for which development of new therapies is required. Here, we report the effect on myeloma cells of LBH589, a new hydroxamic acid-derived histone deacetylase inhibitor. LBH589 was a potent antimyeloma agent (IC(50) < 40 nmol/L) on both cell lines and fresh cells from multiple myeloma patients, including cells resistant to conventional chemotherapeutic agents. In addition, LBH589 potentiated the action of drugs, such as bortezomib, dexamethasone, or melphalan. Using gene array, quantitative PCR, and Western analyses, we observed that LBH589 affected a large number of genes involved in cell cycle and cell death pathways. LBH589 blocked cell cycle progression, and this was accompanied by p21, p53, and p57 up-regulation. LBH589 induced cell death through an increase in the mitochondrial outer membrane permeability. LBH589 favored apoptosome formation by inducing cytochrome c release, Apaf-1 up-regulation, and caspase-9 cleavage. In addition, LBH589 stimulated a caspase-independent pathway through the release of AIF from the mitochondria. LBH589 down-regulated Bcl-2 and particularly Bcl-X. Moreover, overexpression of Bcl-X in multiple myeloma cells prevented LBH589-induced cell death. All these data indicate that LBH589 could be a useful drug for the treatment of multiple myeloma patients.


Assuntos
Inibidores de Histona Desacetilases , Mieloma Múltiplo/tratamento farmacológico , Acetilação/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Ácidos Borônicos/administração & dosagem , Ácidos Borônicos/farmacologia , Bortezomib , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dexametasona/administração & dosagem , Dexametasona/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/farmacologia , Indóis , Melfalan/administração & dosagem , Melfalan/farmacologia , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Panobinostat , Pirazinas/administração & dosagem , Pirazinas/farmacologia , Proteína bcl-X/biossíntese
11.
J Pathol ; 208(1): 108-18, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16278822

RESUMO

Malignant plasma cells in multiple myeloma home to the bone marrow (BM), accumulate in different niches and, in late disease, migrate from the BM into blood. These migratory events involve cell trafficking across extracellular matrix (ECM)-rich basement membranes and interstitial tissues. Metalloproteinases (MMP) degrade ECM and facilitate tumour cell invasion. The chemokine CXCL12 is expressed in the BM, and it was previously shown that it triggers myeloma cell migration and activation. In the present work we show that CXCL12 promotes myeloma cell invasion across Matrigel-reconstituted basement membranes and type I collagen gels. MMP-9 activity was required for invasion through Matrigel towards CXCL12, whereas TIMP-1, a MMP-9 inhibitor that we found to be expressed by myeloma and BM stromal cells, impaired the invasion. In addition, we show that the membrane-bound MT1-MMP metalloproteinase is expressed by myeloma cells and contributes to CXCL12-promoted myeloma cell invasion across Matrigel. Increase in MT1-MMP expression, as well as induction of its membrane polarization by CXCL12 in myeloma cells, might represent potential mechanisms contributing to this invasion. CXCL12-promoted invasion across type I collagen involved metalloproteinases different from MT1-MMP. These data indicate that CXCL12 could contribute to myeloma cell trafficking in the BM involving MMP-9 and MT1-MMP activities.


Assuntos
Membrana Basal/patologia , Quimiocinas CXC/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Mieloma Múltiplo/patologia , Membrana Basal/metabolismo , Materiais Biocompatíveis , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Quimiocina CXCL12 , Colágeno , Colágeno Tipo I/metabolismo , Combinação de Medicamentos , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Laminina , Metaloproteinases da Matriz/análise , Metaloproteinases da Matriz Associadas à Membrana , Mieloma Múltiplo/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Proteoglicanas , Células Estromais/metabolismo , Células Estromais/patologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo
12.
Blood ; 105(11): 4492-9, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15692064

RESUMO

Multiple myeloma is characterized by the accumulation of terminally differentiated B cells in the bone marrow, due to increased proliferation and restricted apoptosis of the myelomatous clone. Here we have studied the participation of a novel mitogen-activated protein kinase (MAPK) route, the extracellular signal-regulated kinase 5 (Erk5) pathway, in the regulation of myeloma cell proliferation and apoptosis. Erk5 was expressed in cells isolated from patients and in myeloma cell lines. The myeloma growth factor interleukin 6 (IL-6) activated Erk5, and this activation was independent of Ras and Src. Expression of a dominant-negative form of Erk5 restricted the proliferation of myeloma cells and inhibited IL-6-dependent cell duplication. This dominant-negative form also sensitized myeloma cells to the proapoptotic action of dexamethasone and PS341. The latter compound caused a profound decrease in the amount of endogenous Erk5 and was less effective in inducing apoptosis when the level of Erk5 was increased by transfection of Erk5. These results place the Erk5 route as a new regulatory signaling pathway that affects multiple myeloma proliferation and apoptosis.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno/fisiologia , Mieloma Múltiplo/enzimologia , Antineoplásicos/farmacologia , Apoptose , Ácidos Borônicos/farmacologia , Bortezomib , Proliferação de Células , Dexametasona/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Interleucina-6/farmacologia , Proteína Quinase 7 Ativada por Mitógeno/análise , Mieloma Múltiplo/etiologia , Mieloma Múltiplo/patologia , Pirazinas/farmacologia , Transdução de Sinais , Células Tumorais Cultivadas
13.
Br J Haematol ; 123(5): 858-68, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14632777

RESUMO

c-Kit has been shown to be mutated in several types of tumours, and its activity has been correlated with increased proliferation rates in a subset of multiple myeloma (MM) patients. We have investigated the effect of imatinib mesylate (STI571), an inhibitor of c-Kit, on MM cells. STI571 inhibited the proliferation of MM cells by arresting cell cycle progression. Western blotting of cell cycle proteins showed that STI571 increased the levels of p21 and p16. MM cells expressed abl, but its level of tyrosine phosphorylation was low and unaffected by treatment with STI571. c-Kit was also expressed in certain MM cell lines, and its phosphorylation was stimulated by stem cell factor. However, the failure to detect the receptor protein in other MM cell lines in which cell proliferation was inhibited by STI571 suggests that its effect on these c-Kit-negative MM cell lines might be caused by the action of the drug on yet unknown targets. STI571 inhibited the proliferation of MM cells resistant to dexamethasone or melphalan and had an additive effect when combined with dexamethasone. Efforts to understand the action of STI571 in MM cells may help to identify these potentially useful targets in the treatment of this and other disorders.


Assuntos
Antineoplásicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Piperazinas/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/uso terapêutico , Benzamidas , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dexametasona/uso terapêutico , Sinergismo Farmacológico , Ativação Enzimática , Citometria de Fluxo , Humanos , Mesilato de Imatinib , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA