Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 15(9)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39330216

RESUMO

Hydroxyapatite (HAp) is a widely used biocompatible material in orthopedic composite preparations. However, HAp composites that exhibit both anticancer and antibacterial activities through bioactive coordination complexes are relatively rare. To explore orthopedic applications, we blended several silver camphorimine compounds with HAp to create [Ag(I)] composites. All compounds [Ag(NO3)(L)n] (n = 1,2) based on camphorimine (LA), camphor sulfonimine (LB) or imine bi-camphor (LC) ligands demonstrated significant cytotoxic activity (IC50 = 0.30-2.6 µgAg/mL) against osteosarcoma cancer cells (HOS). Based on their structural and electronic characteristics, four complexes (1-4) were selected for antibacterial evaluation against Escherichia coli, Burkholderia contaminans, Pseudomonas aeruginosa, and Staphylococcus aureus. All complexes (1-4) revealed combined anticancer and antibacterial activities; therefore, they were used to prepare [Ag(I)]:HAp composites of 50:50% and 20:80% weight compositions and the activities of the composites were assessed. Results showed that they retain the dual anticancer and antibacterial characteristics of their precursor complexes. To replicate the clinical context of bone-filling applications, hand-pressed surfaces (pellets) were prepared. It is worth highlighting that no agglutination agent was necessary for the pellet's consistency. The biological properties of the so-prepared pellets were assessed, and the HOS cells and bacteria spreading on the pellet's surface were analyzed by SEM. Notably, composite 4B, derived from the bicamphor (LC) complex [Ag(NO3)(OC10H14N(C6H4)2NC10H14O)], exhibited significant anticancer activity against HOS cells and antibacterial activity against P. aeruginosa, fostering potential clinical applications on post-surgical OS treatment.

2.
Inorg Chem ; 62(20): 7932-7953, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37154533

RESUMO

A series of mononuclear non-oxido vanadium(IV) complexes, [VIV(L1-4)2] (1-4), featuring tridentate bi-negative ONS chelating S-alkyl/aryl-substituted dithiocarbazate ligands H2L1-4, are reported. All the synthesized non-oxido VIV compounds are characterized by elemental analysis, spectroscopy (IR, UV-vis, and EPR), ESI-MS, as well as electrochemical techniques (cyclic voltammetry). Single-crystal X-ray diffraction studies of 1-3 reveal that the mononuclear non-oxido VIV complexes show distorted octahedral (1 and 2) or trigonal prismatic (3) arrangement around the non-oxido VIV center. EPR and DFT data indicate the coexistence of mer and fac isomers in solution, and ESI-MS results suggest a partial oxidation of [VIV(L1-4)2] to [VV(L1-4)2]+ and [VVO2(L1-4)]-; therefore, all these three complexes are plausible active species. Complexes 1-4 interact with bovine serum albumin (BSA) with a moderate binding affinity, and docking calculations reveal non-covalent interactions with different regions of BSA, particularly with Tyr, Lys, Arg, and Thr residues. In vitro cytotoxic activity of all complexes is assayed against the HT-29 (colon cancer) and HeLa (cervical cancer) cells and compared with the NIH-3T3 (mouse embryonic fibroblast) normal cell line by MTT assay and DAPI staining. The results suggest that complexes 1-4 are cytotoxic in nature and induce cell death in the cancer cell lines by apoptosis and that a mixture of VIV, VV, and VVO2 species could be responsible for the biological activity.


Assuntos
Complexos de Coordenação , Camundongos , Humanos , Animais , Complexos de Coordenação/química , Fibroblastos , Células HeLa , Vanádio/química , Quelantes , Ligantes
3.
Antibiotics (Basel) ; 11(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36009879

RESUMO

The cytotoxic activity of four sets of camphorimine complexes based on the Cu(I), Cu(II), Ag(I), and Au(I) metal sites were assessed against the cisplatin-sensitive A2780 and OVCAR3 ovarian cancer cells. The results showed that the gold complexes were ca. one order of magnitude more active than the silver complexes, which in turn were ca. one order of magnitude more active than the copper complexes. An important finding was that the cytotoxic activity of the Ag(I) and Au(I) camphorimine complexes was higher than that of cisplatin. Another relevant aspect was that the camphorimine complexes did not interact significantly with DNA, in contrast with cisplatin. The cytotoxic activity of the camphorimine complexes displayed a direct relationship with the cellular uptake by OVCAR3 cells, as ascertained by PIXE (particle-induced X-ray emission). The levels of ROS (reactive oxygen species) formation exhibited an inverse relationship with the reduction potentials for the complexes with the same metal, as assessed by cyclic voltammetry. In order to gain insight into the toxicity of the complexes, their cytotoxicity toward nontumoral cells (HDF and V79 fibroblasts) was evaluated. The in vivo cytotoxicity of complex 5 using the nematode Caenorhabditis elegans was also assessed. The silver camphorimine complexes displayed the highest selectivity coefficients (activity vs. toxicity).

4.
Inorg Chem ; 59(19): 14042-14057, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32914971

RESUMO

The synthesis and characterization of one oxidoethoxidovanadium(V) [VVO(L1)(OEt)] (1) and two nonoxidovanadium(IV) complexes, [VIV(L2-3)2] (2 and 3), with aroylhydrazone ligands incorporating naphthalene moieties, are reported. The synthesized oxido and nonoxido vanadium complexes are characterized by various physicochemical techniques, and their molecular structures are solved by single crystal X-ray diffraction (SC-XRD). This revealed that in 1 the geometry around the vanadium atom corresponds to a distorted square pyramid, with a O4N coordination sphere, whereas that of the two nonoxido VIV complexes 2 and 3 corresponds to a distorted trigonal prismatic arrangement with a O4N2 coordination sphere around each "bare" vanadium center. In aqueous solution, the VVO moiety of 1 undergoes a change to VVO2 species, yielding [VVO2(L1)]- (1'), while the nonoxido VIV-compounds 2 and 3 are partly converted into their corresponding VIVO complexes, [VIVO(L2-3)(H2O)] (2' and 3'). Interaction of these VVO2, VIVO, and VIV systems with two model proteins, ubiquitin (Ub) and lysozyme (Lyz), is investigated through docking approaches, which suggest the potential binding sites: the interaction is covalent for species 2' and 3', with the binding to Glu16, Glu18, and Asp21 for Ub, and His15 for Lyz, and it is noncovalent for species 1', 2, and 3, with the surface residues of the proteins. The ligand precursors and complexes are also evaluated for their in vitro antiproliferative activity against ovarian (A2780) and prostate (PC3) human cancer cells and in normal fibroblasts (V79) to check the selectivity of the compounds for cancer cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Muramidase/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Ubiquitina/metabolismo , Vanádio/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Ligantes , Simulação de Acoplamento Molecular , Muramidase/química , Compostos Organometálicos/metabolismo , Neoplasias Ovarianas/patologia , Conformação Proteica , Ubiquitina/química
5.
J Inorg Biochem ; 188: 88-95, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125832

RESUMO

Five silver camphor complexes of formulae [Ag2(L)(L')2] (1,3,5) or [Ag(L)2(L')] (2,4) were synthesized from silver nitrate and the suitable camphor carboxylate (L1) or camphor carboxamides (L3, L4). The complexes were characterized by elemental analysis and spectroscopic techniques (NMR, FTIR, XPS). Computational calculations support coordination of the carboxylate group to silver, in the case of complex 2 and combined mixed keto/carboxylate in the case of complex 1. The stability of the complexes highly relies on the tetrahedral geometry of the lithium ion that binds to four oxygen atoms of the camphor carboxylate ligands. The redox properties of complexes 1 and 4 studied by cyclic voltammetry confirm the facile reduction of the metal sites that depending on the experimental conditions may lead to formation of silver nanoparticles as confirmed by XPS and TEM. Complexes 1, 2 and 4 were tested for cytotoxic activities against A2780 (IC50, 11-14 µM) and A2780 cisplatin resistant (A2780cisR) (IC50, 4-7 µM) cells using the MTT assay. The result showed that the complexes have anticancer activity higher than cisplatin. Complex 1 was also probed for cytotoxicity against the non-tumoral human embryonic kidney (HEK 293, IC50, 62.2 ±â€¯16 µM) cells showing low toxicity in agreement with the silver camphor carboxylate complexes having a considerable selectivity for the ovarian cancer cells A2780 and cisplatin resistant A2780cisR which is a key point under pharmacological uses.


Assuntos
Cânfora , Complexos de Coordenação , Citotoxinas , Neoplasias Ovarianas/tratamento farmacológico , Prata , Cânfora/análogos & derivados , Cânfora/química , Cânfora/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HEK293 , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prata/química , Prata/farmacologia
6.
J Inorg Biochem ; 166: 55-63, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27835775

RESUMO

Camphorsulphonylimine complexes [Ag(NO3)(IL)2] (IL=C12H19N3SO2, 1) and [(AgNO3)2(IIL)] (IIL=C22H23N3SO2, 2) were synthesized and characterized by elemental analysis, spectroscopy (IR, NMR) and cyclic voltammetry. [Ag(NO3)(IL)2] crystalizes in the monoclinic C2 space group with a triangular geometry assuming a chalice-type shape. The anti-proliferative properties of the new complexes 1 and 2 and those of the previously reported [Ag(NO3)(IIIL)] (IIIL=C16H18N3SO2, 3) were assessed against the human ovarian cancer cells (cisplatin-sensitive A2780, cisplatin-resistant A2780cisR) and the non-tumoral human HEK 293 cell line, using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The NR (3-amino-7-dimethylamino-2-methylphenazine hydrochloride) assay was alternatively used to assess the cytotoxicity on the A2780 cells. Results from the MTT assay (48h exposure) show that the complexes display IC50 values lower (by at least one order of magnitude) than cisplatin, while the cytotoxicity of AgNO3 is of the same order of cisplatin. The camphorsulphonylimine ligands display irrelevant (IL, IIIL) or no cytotoxicity (IIL). The highest cytotoxicity (lower IC50) was found for [(AgNO3)2(IIL)]. The binding ability of the complexes to calf thymus-deoxyribonucleic acid (CT-DNA) was studied by fluorescence. Constants (Ksv, Ka) and the number (n) of binding centres to DNA were calculated showing that DNA intercalation possibly occurs in the cases of complexes 2 and 3, while a more complicated process operates for 1. As expected from the cytotoxicity, [(AgNO3)2(IIL)] displays the highest binding affinity (Ka=1.61×105 M-1). No binding to DNA was detected for AgNO3 or IIL under the experimental conditions used. The binding trend to CT-DNA found by fluorescence was corroborated by cyclic voltammetry.


Assuntos
Antineoplásicos , Cânfora , Cisplatino/farmacologia , Complexos de Coordenação , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Iminas , Neoplasias Ovarianas/tratamento farmacológico , Prata , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Cânfora/química , Cânfora/farmacocinética , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HEK293 , Humanos , Iminas/química , Iminas/farmacologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prata/química , Prata/farmacologia
7.
J Inorg Biochem ; 105(5): 637-44, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21450266

RESUMO

Tridentate pyrazole-containing ligands of the Schiff base type, SalPz - HL(1), Cl(2)SalPz - HL(2) and I(2)SalPz - HL(3), were used to prepare a series of new Cu(II) complexes (CuSalPz - 1, CuCl(2)SalPz - 2 and CuI(2)SalPz - 3). These new complexes have been studied by different analytical techniques (electrospray ionization mass spectrometry (ESI-MS), elemental analysis, FT-IR and EPR). The spectroscopic properties of 1-3 are consistent with the formation of Cu(II) complexes coordinated by monoanionic and tridentate (N,N,O)-chelators, behaving as monomeric species in aqueous solution, as shown by EPR studies. Crystals of 2 and 3, obtained by slow concentration of methanolic solutions of the compounds, were also analyzed by X-ray diffraction analysis. The X-ray structural study has shown that 2 crystallized as a dinuclear compound, [Cu(2)(µ-Cl)(2)(Cl(2)SalPz)(2)], while the solid state structure determined for 3 is best described by monomeric units of [CuCl(I(2)SalPz)] displaying short Cu···Cl intermolecular contacts. The in vitro evaluation of 1-3 comprised the study of their DNA-cleaving ability using plasmid DNA and the assessment of their cytotoxic activity against several human cancer cell lines (PC-3 prostate, MCF-7 breast and A2780 and A2780cisR-ovary). The studies with plasmid DNA have shown that 2 and 3 induce extensive DNA cleavage in the presence of different additives. The cytotoxic activity of 2 and 3 is comparable to the one presented by cisplatin, with the exception of the A2780 cell line where cisplatin is more active. It has been found that the introduction of halogen substituents in the phenolate rings of the chelators enhanced the cytotoxicity of the respective Cu(II) complexes.


Assuntos
Quelantes/síntese química , Quelantes/toxicidade , Complexos de Coordenação/síntese química , Cobre/química , Clivagem do DNA , DNA/química , Pirazóis/química , Linhagem Celular Tumoral , Quelantes/química , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Cobre/metabolismo , Cristalografia por Raios X , DNA/metabolismo , Humanos , Ligantes , Pirazóis/síntese química , Bases de Schiff/química , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA