Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561219

RESUMO

OBJECTIVES: A timely diagnosis is imperative for curing cancer. However, in patients with rheumatic musculoskeletal diseases (RMDs) or paraneoplastic syndromes, misleading symptoms frequently delay cancer diagnosis. As metabolic remodelling characterises both cancer and RMD, we analysed if a metabolic signature can indicate paraneoplasia (PN) or reveal concomitant cancer in patients with RMD. METHODS: Metabolic alterations in the sera of rheumatoid arthritis (RA) patients with (n=56) or without (n=52) a history of invasive cancer were quantified by nuclear magnetic resonance analysis. Metabolites indicative of cancer were determined by multivariable regression analyses. Two independent RA and spondyloarthritis (SpA) cohorts with or without a history of invasive cancer were used for blinded validation. Samples from patients with active cancer or cancer treatment, pulmonary and lymphoid type cancers, paraneoplastic syndromes, non-invasive (NI) precancerous lesions and non-melanoma skin cancer and systemic lupus erythematosus and samples prior to the development of malignancy were used to test the model performance. RESULTS: Based on the concentrations of acetate, creatine, glycine, formate and the lipid ratio L1/L6, a diagnostic model yielded a high sensitivity and specificity for cancer diagnosis with AUC=0.995 in the model cohort, AUC=0.940 in the blinded RA validation cohort and AUC=0.928 in the mixed RA/SpA cohort. It was equally capable of identifying cancer in patients with PN. The model was insensitive to common demographic or clinical confounders or the presence of NI malignancy like non-melanoma skin cancer. CONCLUSIONS: This new set of metabolic markers reliably predicts the presence of cancer in arthritis or PN patients with high sensitivity and specificity and has the potential to facilitate a rapid and correct diagnosis of malignancy.

2.
Biomolecules ; 13(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36671491

RESUMO

Adenosine receptors mainly control synaptic function, and excessive activation of adenosine receptors may worsen the onset of many neurological disorders. Accordingly, the regular intake of moderate doses of caffeine antagonizes adenosine receptors and affords robust neuroprotection. Although caffeine intake alters brain functional connectivity and multi-omics analyses indicate that caffeine intake modifies synaptic and metabolic processes, it is unclear how caffeine intake affects behavior, synaptic plasticity and its modulation by adenosine. We now report that male mice drinking caffeinated water (0.3 g/L) for 2 weeks were behaviorally indistinguishable (locomotion, mood, memory) from control mice (drinking water) and displayed superimposable synaptic plasticity (long-term potentiation) in different brain areas (hippocampus, prefrontal cortex, amygdala). Moreover, there was a general preservation of the efficiency of adenosine A1 and A2A receptors to control synaptic transmission and plasticity, although there was a tendency for lower levels of endogenous adenosine ensuring A1 receptor-mediated inhibition. In spite of similar behavioral and neurophysiological function, caffeine intake increased the energy charge and redox state of cortical synaptosomes. This increased metabolic competence likely involved a putative increase in the glycolytic rate in synapses and a prospective greater astrocyte-synapse lactate shuttling. It was concluded that caffeine intake does not trigger evident alterations of behavior or of synaptic plasticity but increases the metabolic competence of synapses, which might be related with the previously described better ability of animals consuming caffeine to cope with deleterious stimuli triggering brain dysfunction.


Assuntos
Adenosina , Cafeína , Masculino , Camundongos , Animais , Cafeína/farmacologia , Adenosina/farmacologia , Adenosina/metabolismo , Estudos Prospectivos , Receptores Purinérgicos P1/metabolismo , Hipocampo/metabolismo
3.
Arthritis Rheumatol ; 75(7): 1098-1109, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36704915

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) CD8+ T cells maintain their effector proinflammatory phenotype by changing their metabolism toward aerobic glycolysis. However, their massive energy and biosynthesis needs may require additional substrates other than glucose. Since systemic alterations in lipid metabolism have been reported in RA patients, we explored the role of fatty acid (FA) metabolism in CD8+ T cells to identify potential targets to curb their proinflammatory potential. METHODS: The expression of FA metabolism-related genes was analyzed for total CD8+ T cells and CD8+ T cell subsets in the data of RA patients and healthy controls retrieved from the GEO database. Functional assays were performed using peripheral blood CD8+ T cells isolated from RA (n = 31), psoriatic arthritis (n = 26), and spondyloarthritis (n = 21) patients receiving different therapies (disease-modifying antirheumatic drugs, biologics, and JAK inhibitors) and from healthy controls (n = 14). We quantified the expression of FA transporters, lipid uptake, intracellular FA content, cytokine production, activation, proliferation, and capacity to inhibit tumor cell growth, either with or without FA metabolism inhibitors. RESULTS: The CD8+ T cell gene expression profile of FA metabolism-related genes was significantly different between untreated RA patients and healthy controls. RA patients who had a good clinical response after 6 months of methotrexate therapy had significantly increased expression of FA metabolism-related genes. Cell surface expression of the FA transporters FA binding protein 4 (FABP4) and G protein-coupled receptor 84 (GPR84) and FA uptake were higher in effector and memory CD8+ T cells from RA patients compared to those from healthy controls. In vitro blockade of FA metabolism significantly impaired CD8+ T cell effector functions. CONCLUSION: RA CD8+ T cells present an altered FA metabolism, which could provide potential therapeutic targets to control their proinflammatory profile, particularly therapies directed against the transport and oxidation of free FA.


Assuntos
Artrite Reumatoide , Humanos , Linfócitos T CD8-Positivos/metabolismo , Subpopulações de Linfócitos T/metabolismo , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo
4.
Polymers (Basel) ; 14(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501709

RESUMO

Copolymers composed of low-molecular-weight polyethylenimine (PEI) and amphiphilic Pluronics® are safe and efficient non-viral vectors for pDNA transfection. A variety of Pluronic® properties provides a base for tailoring transfection efficacy in combination with the unique biological activity of this polymer group. In this study, we describe the preparation of new copolymers based on hydrophilic Pluronic® F68 and PEI (F68PEI). F68PEI polyplexes obtained by doping with free F68 (1:2 and 1:5 w/w) allowed for fine-tuning of physicochemical properties and transfection activity, demonstrating improved in vitro transfection of the human bone osteosarcoma epithelial (U2OS) and oral squamous cell carcinoma (SCC-9) cells when compared to the parent formulation, F68PEI. Although all tested systems condensed pDNA at varying polymer/DNA charge ratios (N/P, 5/1−100/1), the addition of free F68 (1:5 w/w) resulted in the formation of smaller polyplexes (<200 nm). Analysis of polyplex properties by transmission electron microscopy and dynamic light scattering revealed varied polyplex morphology. Transfection potential was also found to be cell-dependent and significantly higher in SCC-9 cells compared to the control bPEI25k cells, as especially evident at higher N/P ratios (>25). The observed selectivity towards transfection of SSC-9 cells might represent a base for further optimization of a cell-specific transfection vehicle.

5.
Ann Rheum Dis ; 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922125

RESUMO

OBJECTIVES: Rheumatic immune-related adverse events (irAE) such as (poly)arthritis in patients undergoing immune checkpoint inhibitor (ICI) treatment pose a major clinical challenge. ICI therapy improves CD8+ T cell (CD8) function, but CD8 contributes to chronic inflammation in autoimmune arthritis (AA). Thus, we investigated whether immune functional and metabolic changes in CD8 explain the development of musculoskeletal irAE in ICI-treated patients. METHODS: Peripheral CD8 obtained from ICI-treated patients with and without arthritis irAEs and from AA patients with and without a history of malignancy were stimulated in media containing 13C-labelled glucose with and without tofacitinib or infliximab. Changes in metabolism, immune-mediator release, expression of effector cell-surface molecules and inhibition of tumour cell growth were quantified. RESULTS: CD8 from patients with irAE showed significantly lower frequency and expression of cell-surface molecule characteristic for activation, effector-functions, homing, exhaustion and apoptosis and reduced release of cytotoxic and proinflammatory immune mediators compared with CD8 from ICI patients who did not develop irAE. This was accompanied by a higher glycolytic rate and ATP production. Gene-expression analysis of pre-ICI-treated CD8 revealed several differentially expressed transcripts in patients who later developed arthritis irAEs. In vitro tofacitinib or infliximab treatment did not significantly change the immune-metabolic profile nor the capacity to release cytolytic mediators that inhibit the growth of the human lung cancer cell line H838. CONCLUSIONS: Our study shows that CD8 from ICI-treated patients who develop a musculoskeletal irAE has a distinct immune-effector and metabolic profile from those that remain irAE free. This specific irAE profile overlaps with the one observed in CD8 from AA patients and may prove useful for novel therapeutic strategies to manage ICI-induced irAEs.

6.
Arch Toxicol ; 94(12): 4067-4084, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32894303

RESUMO

Mitoxantrone (MTX) is used to treat several types of cancers and to improve neurological disability in multiple sclerosis. Unfortunately, cardiotoxicity is a severe and common adverse effect in MTX-treated patients. Herein, we aimed to study early and late mechanisms of MTX-induced cardiotoxicity using murine HL-1 cardiomyocytes. Cells were exposed to MTX (0.1, 1 or 10 µM) during short (2, 4, 6, or 12 h) or longer incubation periods (24 or 48 h). At earlier time points, (6 and 12 h) cytotoxicity was already observed for 1 and 10 µM MTX. Proteomic analysis of total protein extracts found 14 proteins with higher expression and 26 with lower expression in the cells exposed for 12 h to MTX (pH gradients 4-7 and 6-11). Of note, the expression of the regulatory protein 14-3-3 protein epsilon was increased by a factor of two and three, after exposure to 1 and 10 µM MTX, respectively. At earlier time-points, 10 µM MTX increased intracellular ATP levels, while decreasing media lactate levels. At later stages (24 and 48 h), MTX-induced cytotoxicity was concentration and time-dependent, according to the MTT reduction and lactate dehydrogenase leakage assays, while caspase-9, -8 and -3 activities increased at 24 h. Regarding cellular redox status, total glutathione increased in 1 µM MTX (24 h), and that increase was dependent on gamma-glutamylcysteine synthetase activity. Meanwhile, for both 1 and 10 µM MTX, oxidized glutathione was significantly higher than control at 48 h. Moreover, MTX was able to significantly decrease proteasomal chymotrypsin-like activity in a concentration and time-independent manner. In summary, MTX significantly altered proteomic, energetic and oxidative stress homeostasis in cardiomyocytes at clinically relevant concentrations and our data clearly demonstrate that MTX causes early cardiotoxicity that needs further study.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Cardiopatias/induzido quimicamente , Mitoxantrona/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma , Proteômica , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Cardiotoxicidade , Linhagem Celular , Relação Dose-Resposta a Droga , Cardiopatias/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica , Fatores de Tempo
7.
Arthritis Rheumatol ; 72(12): 2050-2064, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32602217

RESUMO

OBJECTIVE: CD8+ T cells contribute to rheumatoid arthritis (RA) by releasing proinflammatory and cytolytic mediators, even in a challenging hypoxic and nutrient-poor microenvironment such as the synovial membrane. This study was undertaken to explore the mechanisms through which CD8+ T cells meet their metabolic demands in the blood and synovial membrane of patients with RA. METHODS: Purified blood CD8+ T cells from patients with RA, patients with psoriatic arthritis (PsA), and patients with spondyloarthritis (SpA), as well as healthy control subjects, and CD8+ T cells from RA synovial membrane were stimulated in medium containing 13 C-labeled metabolic substrates in the presence or absence of metabolic inhibitors, under conditions of normoxia or hypoxia. The production of metabolic intermediates was quantified by 1 H-nuclear magnetic resonance. The expression of metabolic enzymes, transcription factors, and immune effector molecules was assessed at both the messenger RNA (mRNA) and protein levels. CD8+ T cell functional studies were performed. RESULTS: RA blood CD8+ T cells met their metabolic demands through aerobic glycolysis, production of uniformly 13 C-enriched lactate in the RA blood (2.6 to 3.7-fold higher than in patients with SpA, patients with PsA, and healthy controls; P < 0.01), and induction of glutaminolysis. Overexpression of Warburg effect-linked enzymes in all RA CD8+ T cell subsets maintained this metabolic profile, conferring to the cells the capacity to proliferate under hypoxia and low-glucose conditions. In all RA CD8+ T cell subsets, lactate dehydrogenase A (LDHA) was overexpressed at the mRNA level (P < 0.03 versus controls; n = 6 per group) and protein level (P < 0.05 versus controls; n = 17 RA patients, n = 9 controls). In RA blood, inhibition of LDHA with FX11 led to reductions in lipogenesis, migration and proliferation of CD8+ T cells, and CD8+ T cell effector functions, while production of reactive oxygen species was increased by 1.5-fold (P < 0.03 versus controls). Following inhibition of LDHA with FX11, RA CD8+ T cells lost their capacity to induce healthy B cells to develop a proinflammatory phenotype. Similar metabolic alterations were observed in RA CD8+ T cells from the synovial membrane. CONCLUSION: Remodeling glucose and glutamine metabolism in RA CD8+ T cells by targeting LDHA activity can reduce the deleterious inflammatory and cytolytic contributions of these cells to the development of autoimmunity.


Assuntos
Artrite Reumatoide/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Glicólise/fisiologia , Inflamação/metabolismo , Lactato Desidrogenase 5/metabolismo , Adolescente , Adulto , Idoso , Artrite Psoriásica/imunologia , Artrite Psoriásica/metabolismo , Artrite Reumatoide/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espondilartrite/imunologia , Espondilartrite/metabolismo , Adulto Jovem
8.
Obes Surg ; 30(10): 4019-4028, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32564307

RESUMO

PURPOSE: Biliopancreatic diversion with duodenal switch (BPD-DS) is an effective weight loss surgical procedure. Yet, BPD-DS is technically difficult to perform and carries a higher risk of nutrient deficiencies as compared with other surgical interventions. Single-anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) is a modified BPD-DS procedure conceived with the aim of decreasing the technical complexity, while retaining the weight loss efficiency. Whether the two surgical procedures diverge in nutrient absorption rates and malnutrition risk is still matter of debate. Our aim was to determine if postprandial nutrient absorption rates are different in patients subjected to BPD-DS or SADI-S for weight loss. MATERIALS AND METHODS: Plasma amino acid metabolomic profiling during mixed-meal tolerance test (MMTT) was performed in subjects (N = 18) submitted to BPD-DS (n = 9) or SADI-S (n = 9) 1.6 ± 0.1 years earlier. RESULTS: Patients submitted to SADI-S or BPD-DS presented distinct postprandial metabolomic profiles. Postprandial excursions of total and essential amino acids-leucine, isoleucine, and valine-were higher after SADI-S as compared with BPD-DS. CONCLUSION: Our study demonstrates that a simplified malabsorptive bariatric surgery procedure SADI-S results in greater essential branched-chain amino acid absorption when compared with the classical BPD-DS intervention. These findings suggest that SADI-S can potentially lower lifetime risk of postoperative protein malnutrition, as well as have a positive impact on systemic metabolism and glucose homeostasis.


Assuntos
Cirurgia Bariátrica , Desvio Biliopancreático , Obesidade Mórbida , Aminoácidos , Duodeno , Gastrectomia , Humanos , Obesidade Mórbida/cirurgia
9.
Ann Rheum Dis ; 79(4): 499-506, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32079570

RESUMO

OBJECTIVES: The differential diagnosis of seronegative rheumatoid arthritis (negRA) and psoriasis arthritis (PsA) is often difficult due to the similarity of symptoms and the unavailability of reliable clinical markers. Since chronic inflammation induces major changes in the serum metabolome and lipidome, we tested whether differences in serum metabolites and lipids could aid in improving the differential diagnosis of these diseases. METHODS: Sera from negRA and PsA patients with established diagnosis were collected to build a biomarker-discovery cohort and a blinded validation cohort. Samples were analysed by proton nuclear magnetic resonance. Metabolite concentrations were calculated from the spectra and used to select the variables to build a multivariate diagnostic model. RESULTS: Univariate analysis demonstrated differences in serological concentrations of amino acids: alanine, threonine, leucine, phenylalanine and valine; organic compounds: acetate, creatine, lactate and choline; and lipid ratios L3/L1, L5/L1 and L6/L1, but yielded area under the curve (AUC) values lower than 70%, indicating poor specificity and sensitivity. A multivariate diagnostic model that included age, gender, the concentrations of alanine, succinate and creatine phosphate and the lipid ratios L2/L1, L5/L1 and L6/L1 improved the sensitivity and specificity of the diagnosis with an AUC of 84.5%. Using this biomarker model, 71% of patients from a blinded validation cohort were correctly classified. CONCLUSIONS: PsA and negRA have distinct serum metabolomic and lipidomic signatures that can be used as biomarkers to discriminate between them. After validation in larger multiethnic cohorts this diagnostic model may become a valuable tool for a definite diagnosis of negRA or PsA patients.


Assuntos
Artrite Psoriásica/sangue , Artrite Reumatoide/sangue , Acetatos/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Alanina/sangue , Aminoácidos/sangue , Artrite Psoriásica/diagnóstico , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/imunologia , Colina/sangue , Creatina/sangue , Diagnóstico Diferencial , Feminino , Humanos , Ácido Láctico/sangue , Lipidômica , Lipídeos/sangue , Masculino , Metaboloma , Metabolômica , Pessoa de Meia-Idade , Fosfocreatina/sangue , Espectroscopia de Prótons por Ressonância Magnética , Ácido Succínico/sangue
10.
Obes Surg ; 30(3): 1068-1078, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31820408

RESUMO

BACKGROUND/AIM: Roux-en-Y gastric bypass (RYGB) with a long biliopancreatic limb (BPL) was demonstrated to further improve type 2 diabetes (T2D) outcomes. Whether benefits occur at the cost of a negative impact on nutrient absorption is a matter of debate. Our aim was to evaluate the impact of RYGB BPL length on short-term nutrient absorption. METHODS: Subjects (N = 20) submitted to RYGB with a 2 m BPL (n = 11) or standard BPL (60-100 cm) (n = 9) 4.2 ± 0.4 years earlier underwent a mixed meal tolerance test. Plasma metabolites were analyzed at baseline and after meal by nuclear magnetic resonance (NMR) spectroscopy. Spectra were subject to multivariate analysis (MVA). Partial least square discriminant analysis (PLS-DA) was used to identify metabolites responsible for group discrimination. RESULTS: Principal component analysis and PLS-DA showed a clear separation between plasma metabolites before and 30 min after meal intake in both groups. The metabolites responsible for differences between time points were glucose and branched-chain amino acids. A complete overlap in metabolite species and concentrations was observed at 0 and 30 min time points for both groups, while acetate levels 120 min after the meal intake were significantly higher in subjects submitted to RYGB with a 2-m-long BPL as compared to the group submitted to the standard RYGB procedure. CONCLUSIONS: Post-prandial plasma metabolomics profiles suggest that a 2-m-long BLP RYGB does not have a negative impact on acute metabolite absorption. RYGB BPL length seems to influence post-prandial acetate levels, which could contribute to the additional positive metabolic outcomes.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Obesidade Mórbida , Humanos , Metabolômica , Obesidade Mórbida/cirurgia , Redução de Peso
11.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3388-3396, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30059728

RESUMO

Aging is associated with structural and functional changes in the organism that result in the declining of its functioning. Postponed parenthood has renewed the interest in age-related decline of testicular function and male fertility. Still, little is known about the molecular mechanisms associated with testicular senescence and related decline of fertility. Here we sought to elucidate the molecular basis of metabolic changes associated with testicular aging and reproductive potential using an NMR-based metabolomics approach. Testicular metabolic profiles of rats from 3 to 24 months-of-age were analysed. An age-associated decrease in most antioxidant metabolites, like betaine, creatine and glutathione was observed. Amino acid content changed as early as 6 months-of-age, with an increase in branched chain and aromatic amino acids, accompanied by decrease of nucleotide synthesis (IMP, CMP, ATP). Testicular content of phospholipid precursors (choline, ethanolamine, myo-inositol, glycerol) increased with advanced age and was accompanied by a decrease in the levels of their phosphorylated products, suggesting compromised spermatogenesis. This is the first metabolomics study of testicular tissue of aged rats and we were able to identify metabolites associated with reproductive maturity from the onset to senescence. Our results provide evidence for an influence of aging on global testicular metabolome, as early as 6 months-of-age, with a profound alteration of several key metabolic pathways associated with the male reproductive potential.


Assuntos
Envelhecimento/metabolismo , Fertilidade , Metabolômica/métodos , Testículo/química , Animais , Betaína/análise , Creatina/análise , Glutationa/análise , Espectroscopia de Ressonância Magnética , Masculino , Redes e Vias Metabólicas , Ratos , Ratos Wistar
12.
Front Immunol ; 9: 701, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867918

RESUMO

Inflammatory bowel disease is characterized by chronic relapsing idiopathic inflammation of the gastrointestinal tract and persistent inflammation. Studies focusing on the immune-regulatory function of reactive oxygen species (ROS) are still largely missing. In this study, we analyzed an ROS-deficient mouse model leading to colon adenocarcinoma. Colitis was induced with dextran sulfate sodium (DSS) supplied via the drinking water in wild-type (WT) and Ncf1-mutant (Ncf1) B10.Q mice using two different protocols, one mimicking recovery after acute colitis and another simulating chronic colitis. Disease progression was monitored by evaluation of clinical parameters, histopathological analysis, and the blood serum metabolome using 1H nuclear magnetic resonance spectroscopy. At each experimental time point, colons and spleens from some mice were removed for histopathological analysis and internal clinical parameters. Clinical scores for weight variation, stool consistency, colorectal bleeding, colon length, and spleen weight were significantly worse for Ncf1 than for WT mice. Ncf1 mice with only a 7-day exposure to DSS followed by a 14-day resting period developed colonic distal high-grade dysplasia in contrast to the low-grade dysplasia found in the colon of WT mice. After a 21-day resting period, there was still ß-catenin-rich inflammatory infiltration in the Ncf1 mice together with high-grade dysplasia and invasive well-differentiated adenocarcinoma, while in the WT mice, high-grade dysplasia was prominent without malignant invasion and only low inflammation. Although exposure to DSS generated less severe histopathological changes in the WT group, the blood serum metabolome revealed an increased fatty acid content with moderate-to-strong correlations to inflammation score, weight variation, colon length, and spleen weight. Ncf1 mice also displayed a similar pattern but with lower coefficients and showed consistently lower glucose and/or higher lactate levels which correlated with inflammation score, weight variation, and spleen weight. In our novel, DSS-induced colitis animal model, the lack of an oxidative burst ROS was sufficient to develop adenocarcinoma, and display altered blood plasma metabolic and lipid profiles. Thus, oxidative burst seems to be necessary to prevent evolution toward cancer and may confer a protective role in a ROS-mediated self-control mechanism.


Assuntos
Adenocarcinoma/genética , Colite/genética , Neoplasias do Colo/genética , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Metabolismo dos Lipídeos , Masculino , Metabolômica , Camundongos
13.
Front Neurosci ; 12: 1015, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30686981

RESUMO

Diabetes affects the morphology and plasticity of the hippocampus, and leads to learning and memory deficits. Caffeine has been proposed to prevent memory impairment upon multiple chronic disorders with neurological involvement. We tested whether long-term caffeine consumption prevents type 2 diabetes (T2D)-induced spatial memory impairment and hippocampal alterations, including synaptic degeneration, astrogliosis, and metabolic modifications. Control Wistar rats and Goto-Kakizaki (GK) rats that develop T2D were treated with caffeine (1 g/L in drinking water) for 4 months. Spatial memory was evaluated in a Y-maze. Hippocampal metabolic profile and glucose homeostasis were investigated by 1H magnetic resonance spectroscopy. The density of neuronal, synaptic, and glial-specific markers was evaluated by Western blot analysis. GK rats displayed reduced Y-maze spontaneous alternation and a lower amplitude of hippocampal long-term potentiation when compared to controls, suggesting impaired hippocampal-dependent spatial memory. Diabetes did not impact the relation of hippocampal to plasma glucose concentrations, but altered the neurochemical profile of the hippocampus, such as increased in levels of the osmolites taurine (P < 0.001) and myo-inositol (P < 0.05). The diabetic hippocampus showed decreased density of the presynaptic proteins synaptophysin (P < 0.05) and SNAP25 (P < 0.05), suggesting synaptic degeneration, and increased GFAP (P < 0.001) and vimentin (P < 0.05) immunoreactivities that are indicative of astrogliosis. The effects of caffeine intake on hippocampal metabolism added to those of T2D, namely reducing myo-inositol levels (P < 0.001) and further increasing taurine levels (P < 0.05). Caffeine prevented T2D-induced alterations of GFAP, vimentin and SNAP25, and improved memory deficits. We conclude that caffeine consumption has beneficial effects counteracting alterations in the hippocampus of GK rats, leading to the improvement of T2D-associated memory impairment.

14.
Bioorg Med Chem ; 24(16): 3556-64, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27290693

RESUMO

Colon cancer is one of the most incident cancers in the Western World. While both genetic and epigenetic factors may contribute to the development of colon cancer, it is known that chronic inflammation associated to excessive production of reactive oxygen and nitrogen species by phagocytes may ultimately initiate the multistep process of colon cancer development. Phenolic compounds, which reveal antioxidant and antiproliferative activities in colon cancer cells, can be a good approach to surpass this problem. In this work, hydroxycinnamic amides and the respective acid precursors were tested in vitro for their capacity to modulate human neutrophils' oxidative burst and simultaneously to inhibit growth of colon cancer cells. A phenolic amide derivative, caffeic acid hexylamide (CAHA) (4) was found to be the most active compound in both assays, inhibiting human neutrophils' oxidative burst, restraining the inflammatory process, inhibiting growth of colon cancer cells and triggering mitochondrial dysfunction that leads cancer cells to apoptosis. Altogether, these achievements can contribute to the understanding of the relationship between antioxidant and anticancer activities and based on the structure-activity relationships (SAR) established can be the starting point to find more effective phenolic compounds as anticancer agents.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Ácidos Cumáricos/farmacologia , Neutrófilos/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Infravermelho
15.
Bioorg Med Chem ; 24(12): 2823-31, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27160054

RESUMO

In this work, new potent steroidal aromatase inhibitors both in microsomes and in breast cancer cells have been found. The synthesis of the 3,4-(ethylenedioxy)androsta-3,5-dien-17-one (12), a new steroid containing a heterocycle dioxene fused in the A-ring, led to the discovery of a new reaction for which a mechanism is proposed. New structure-activity relationships were established. Some 5ß-steroids, such as compound 4ß,5ß-epoxyandrostan-17-one (9), showed aromatase inhibitory activity, because they adopt a similar A-ring conformation as those of androstenedione, the natural substrate of aromatase. Moreover, new chemical features to increase planarity were disclosed, specifically the 3α,4α-cyclopropane ring, as in 3α,4α-methylen-5α-androstan-17-one (5) (IC50=0.11µM), and the Δ(9-11) double bond in the C-ring, as in androsta-4,9(11)-diene-3,17-dione (13) (IC50=0.25µM). In addition, induced-fit docking (IFD) simulations and site of metabolism (SoM) predictions helped to explain the recognition of new potent steroidal aromatase inhibitors within the enzyme. These insights can be valuable tools for the understanding of the molecular recognition process by the aromatase and for the future design of new steroidal inhibitors.


Assuntos
Androstanos/química , Androstanos/farmacologia , Androstenodiona/química , Androstenodiona/farmacologia , Inibidores da Aromatase/química , Inibidores da Aromatase/farmacologia , Aromatase/metabolismo , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Feminino , Humanos , Simulação de Acoplamento Molecular , Esteroides/química , Esteroides/farmacologia , Relação Estrutura-Atividade
16.
J Neurochem ; 136(5): 947-57, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26709861

RESUMO

Adenosine is a neuromodulator that protects neurons from hypoxia. This effect is attributed to the ability of adenosine A1 receptors (A1 R) to inhibit excitatory synaptic transmission. However, A1 R activation also protects non-brain tissues from hypoxic insults by controlling metabolism. Thus, we now tested the hypothesis that A1 R-mediated neuroprotection after a hypoxic insult in superfused hippocampal slices also involves the control of neuronal and astrocytic metabolism. A 90-min hypoxia insult increased lactate, alanine, and pyruvate levels and decreased energy charge (EC), phosphocreatine/creatine ratio, and glutamine content. These metabolic modifications were fully recovered after reoxygenation for 3 h. The presence of the A1 R-selective antagonist 1,3-dipropyl-8-cyclopentylxanthine stimulated glycolysis, prevented the hypoxia-induced decrease of EC, and increased the levels of GABA. A1 R blockade further blunted the recovery of metabolism on reoxygenation after hypoxia, as typified by a sustained decreased EC and an increased mitochondrial metabolism, as confirmed by a greater [U-(13) C]glucose oxidation through the tricarboxylic acid cycle. These results demonstrate that A1 R blockade prevents the recovery of hypoxia-induced metabolic alterations during reoxygenation, which indicates that the ability of A1 R to control primary metabolism in the brain tissue may be a hitherto unrecognized mechanism of A1 R-mediated neuroprotection. This study demonstrates that tonic activation of adenosine A1 receptors (A1 R) plays an important role in the reoxygenation recovery of the metabolic alterations caused by transient hypoxia in rat hippocampal slices. This ability of A1 R to inhibit neuronal metabolism may be a key mechanism by which adenosine affords neuroprotection upon acute hypoxia, thus preventing the long-term impairment of neuronal circuits.


Assuntos
Hipocampo/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Neurônios/metabolismo , Receptor A1 de Adenosina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Xantinas/farmacologia , Adenosina/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/metabolismo , Hipóxia/metabolismo , Masculino , Receptor A1 de Adenosina/efeitos dos fármacos
17.
Cell Tissue Res ; 362(2): 431-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26051285

RESUMO

Diabetes mellitus (DM) is a metabolic disease that has grown to pandemic proportions. Recent reports have highlighted the effect of DM on male reproductive function. Here, we hypothesize that testicular metabolism is altered in type 1 diabetic (T1D) men seeking fertility treatment. We propose to determine some metabolic fingerprints in testicular biopsies of diabetic patients. For that, testicular tissue from five normal and five type 1 diabetic men was analyzed by high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. mRNA and protein expression of glucose transporters and glycolysis-related enzymes were also evaluated. Our results show that testes from diabetic men presented decreased levels of lactate, alanine, citrate and creatine. The mRNA levels of glucose transporter 1 (GLUT1) and phosphofructokinase 1 (PFK1) were decreased in testes from diabetic men but only GLUT3 presented decreased mRNA and protein levels. Lactate dehydrogenase (LDH) and glutamate pyruvate transaminase (GPT) protein levels were also found to be decreased in testes from diabetic men. Overall, our results show that T1D alters glycolysis-related transporters and enzymes, compromising lactate content in the testes. Moreover, testicular creatine content was severely depressed in T1D men. Since lactate and creatine are essential for germ cells development and support, the data discussed here open new insights into the molecular mechanism by which DM promotes subfertility/infertility in human males.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Glicólise/fisiologia , Testículo/metabolismo , Testículo/patologia , Biópsia , Diabetes Mellitus Tipo 1/patologia , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Reprodução/fisiologia
18.
Eur J Clin Invest ; 45 Suppl 1: 37-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25524585

RESUMO

BACKGROUND: Cancer cells are widely recognized for being able to adapt their metabolism towards converting available nutrients into biomass to increase proliferation rates. MATERIALS AND METHODS: We will review a series of nuclear magnetic resonance (NMR)-based stable isotope tracer methodologies for probing cancer metabolism. RESULTS: The monitoring of such adaptations is of the utmost importance to unravel cancer metabolism and tumour growth. Several major metabolic targets have been recognized as promising foci and have been addressed by multiple studies in recent years. In this work are presented strategies to quantify glycolysis, pentose phosphate pathway, Krebs cycle turnover and de novo lipogenesis by NMR isotopomer analysis. CONCLUSIONS: Being able to adequately define the interplay between metabolic pathways allows the monitoring of their prevalence in tissues and such information is critical for an accurate knowledge of the metabolic distinctive nature of tumours towards devising more efficient antitumorigenic strategies. Discussed methodologies are currently available in the literature, but to date, no single review has compiled all their possible uses, particularly in an interdependent perspective.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Glicólise/fisiologia , Lipogênese/fisiologia , Espectroscopia de Ressonância Magnética , Neoplasias/metabolismo , Via de Pentose Fosfato/fisiologia , Isótopos de Carbono , Deutério , Humanos
19.
Eur J Med Chem ; 87: 336-45, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25277066

RESUMO

Exemestane is a third-generation steroidal aromatase inhibitor that has been used in clinic for hormone-dependent breast cancer treatment in post-menopausal women. It is known that exemestane undergoes a complex metabolization, giving rise to some already identified metabolites, the 17ß-hydroxy-6-methylenandrosta-1,4-dien-3-one (17-ßHE) and the 6-(hydroxymethyl)androsta-1,4,6-triene-3,17-dione (6-HME). In this study, four metabolites of exemestane have been analyzed, three of them were synthesized (6ß-spirooxiranandrosta-1,4-diene-3,17-dione (2), 1α,2α-epoxy-6-methylenandrost-4-ene-3,17-dione (3) and 17-ßHE (4)) while one was acquired, the 6-HME (6). The stereochemistry of the epoxide group of 2 and 3 has been unequivocally elucidated for the first time on the basis of NOESY experiments. New structure-activity relationships (SAR) have been established through the observation that the substitution of the double bonds by epoxide groups led to less potent derivatives in microsomes. However, the reduction of the C-17 carbonyl group to a hydroxyl group originating 17-ßHE (4) resulted in a significant increase in activity in MCF-7aro cells when compared to exemestane (IC50 0.25 µM vs 0.90 µM, respectively). All the studied metabolites reduced MCF-7aro cells viability in a dose and time-dependent manner, and metabolite 3 was the most potent one. Altogether our results showed that not only exemestane but also its main metabolites are potent aromatase inhibitors and reduce breast cancer cells viability. This suggests that exemestane efficacy may also be due to the active metabolites that result from its metabolic transformation. Our results emphasize the importance of performing further studies to expand our understanding of exemestane actions in breast cancer cells.


Assuntos
Androstadienos/síntese química , Androstadienos/farmacologia , Inibidores da Aromatase/síntese química , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/patologia , Receptores de Estrogênio/metabolismo , Androstadienos/química , Inibidores da Aromatase/química , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Humanos , Células MCF-7 , Estereoisomerismo , Relação Estrutura-Atividade , Fatores de Tempo
20.
Biomed Res Int ; 2014: 759791, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25093181

RESUMO

(13)C NMR isotopomer analysis was used to characterize intermediary metabolism in three colorectal cancer cell lines (WiDr, LS1034, and C2BBe1) and determine the "metabolic remodeling" that occurs under hypoxia. Under normoxia, the three colorectal cancer cell lines present high rates of lactate production and can be seen as "Warburg" like cancer cells independently of substrate availability, since such profile was dominant at both high and low glucose media contents. The LS1034 was the less glycolytic of the three cell lines and was the most affected by the event of hypoxia, raising abruptly glucose consumption and lactate production. The other two colorectal cell lines, WiDr and C2BBe1, adapted better to hypoxia and were able to maintain their oxidative fluxes even at the very low levels of oxygen. These differential metabolic behaviors of the three colorectal cell lines show how important an adequate knowledge of the "metabolic remodeling" that follows a given cancer treatment is towards the correct (re)design of therapeutic strategies against cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Glucose/metabolismo , Oxirredução , Oxigênio/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Hipóxia Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Glucose/biossíntese , Humanos , Ácido Láctico/biossíntese , Ácido Láctico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA