Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Ann Oncol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704093

RESUMO

BACKGROUND: Immunotherapy combined with chemotherapy significantly improves progression-free survival (PFS) compared to first-line chemotherapy alone in advanced endometrial cancer (EC), with a much larger effect size in microsatellite instability-high (MSI-H) cases. New biomarkers might help to select patients who may have benefit among those with a microsatellite-stable (MSS) tumor. PATIENTS AND METHODS: In a pre-planned translational analysis of the MITO END-3 trial, we assessed the significance of genomic abnormalities in patients randomized to standard carboplatin/paclitaxel without or with avelumab. RESULTS: Out of 125 randomized patients, 109 had samples eligible for next-generation sequencing analysis, and 102 had MSI tested. According to The Cancer Genome Atlas (TCGA), there were 29 cases with MSI-H, 26 with MSS TP53 wild type (wt), 47 with MSS TP53 mutated (mut), and 1 case with POLE mutation. Four mutated genes were present in >30% of cases: TP53, PIK3CA, ARID1A, and PTEN. Eleven patients (10%) had a BRCA1/2 mutation (five in MSI-H and six in MSS). High tumor mutational burden (≥10 muts/Mb) was observed in all MSI-H patients, in 4 out of 47 MSS/TP53 mut, and no case in the MSS/TP53 wt category. The effect of avelumab on PFS significantly varied according to TCGA categories, being favorable in MSI-H and worst in MSS/TP53 mut (P interaction = 0.003); a similar non-significant trend was seen in survival analysis. ARID1A and PTEN also showed a statistically significant interaction with treatment effect, which was better in the presence of the mutation (ARID1A P interaction = 0.01; PTEN P interaction = 0.002). CONCLUSION: The MITO END-3 trial results suggest that TP53 mutation is associated with a poor effect of avelumab, while mutations of PTEN and ARID1A are related to a positive effect of the drug in patients with advanced EC.

2.
Clin Transl Oncol ; 22(3): 294-301, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31630357

RESUMO

PURPOSE: Anaplastic lymphoma kinase (ALK) rearrangement confers sensitivity to ALK inhibitors (ALKis) in non-small-cell lung cancer (NSCLC). Although several drugs provided an impressive outcome benefit, the most effective sequential strategy is still unknown. We describe outcomes of real-life patients according to the treatment strategy received. PATIENTS: We retrospectively collected 290 ALK rearranged advanced NSCLC diagnosed between 2011 and 2017 in 23 Italian institutions. RESULTS: After a median follow-up of 26 months, PFS for crizotinib and a new generation ALKis were 9.4 [CI 95% 7.9-11.2] and 11.1 months [CI 95% 9.2-13.8], respectively, while TTF were 10.2 [CI 95% 8.5-12.6] and 11.9 months [CI 95% 9.7-17.4], respectively, being consistent across the different settings. The composed outcomes (the sum of PFS or TTF) in patients treated with crizotinib followed by a new generation ALKis were 27.8 months [CI 95% 24.3-33.7] in PFS and 30.4 months [CI 95% 24.7-34.9] in TTF. The median OS from the diagnosis of advanced disease was 39 months [CI 95% 31.8-54.5]. Patients receiving crizotinib followed by a new generation ALKis showed a higher median OS [57 months (CI 95% 42.0-73.8)] compared to those that did not receive crizotinib [38 months (CI 95% 18.6-NR)] and those who performed only crizotinib as target agent [15 months (CI 95% 11.3-34.0)] (P < 0.0001). CONCLUSION: The sequential administration of crizotinib and a new generation ALKis provided a remarkable clinical benefit in this real-life population, being an interesting option to consider in selected patients.


Assuntos
Quinase do Linfoma Anaplásico/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Crizotinibe/uso terapêutico , Feminino , Rearranjo Gênico , Humanos , Itália , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
3.
Genet Mol Res ; 11(1): 332-9, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22370935

RESUMO

The gene XRCC3 (X-ray cross complementing group 3) has the task of repairing damage that occurs when there is recombination between homologous chromosomes. Repair of recombination between homologous chromosomes plays an important role in maintaining genome integrity, although it is known that double-strand breaks are the main inducers of chromosomal aberrations. Changes in the XRCC3 protein lead to an increase in errors in chromosome segregation due to defects in centrosomes, resulting in aneuploidy and other chromosomal aberrations, such as small increases in telomeres. We examined XRCC3 Thr241Met polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. The individuals of the control group (N = 100) were selected from the general population of the São Paulo State. Odds ratio and 95%CI were calculated using a logistic regression model. Patients who had the allele Met of the XRCC3 Thr241Met polymorphism had a significantly increased risk of tumor development (odds ratio = 3.13; 95% confidence interval = 1.50-6.50). There were no significant differences in overall survival of patients. We suggest that XRCC3 Thr241Met polymorphism is involved in susceptibility for developing astrocytomas and glioblastomas.


Assuntos
Astrocitoma/genética , Proteínas de Ligação a DNA/genética , Glioblastoma/genética , Adolescente , Adulto , Idoso , Alelos , Centrossomo/patologia , Criança , Pré-Escolar , Aberrações Cromossômicas , Segregação de Cromossomos/genética , Reparo do DNA , Feminino , Predisposição Genética para Doença , Variação Genética , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
4.
Genet Mol Res ; 10(2): 1120-9, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21710464

RESUMO

XRCC genes (X-ray cross-complementing group) were discovered mainly for their roles in protecting mammalian cells against damage caused by ionizing radiation. Studies determined that these genes are important in the genetic stability of DNA. Although the loss of some of these genes does not necessarily confer high levels of sensitivity to radiation, they have been found to represent important components of various pathways of DNA repair. To ensure the integrity of the genome, a complex system of DNA repair was developed. Base excision repair is the first defense mechanism of cells against DNA damage and a major event in preventing mutagenesis. Repair genes may play an important role in maintaining genomic stability through different pathways that are mediated by base excision. In the present study, we examined XRCC1Arg194Trp and XRCC1Arg399Gln polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. Patients who had the allele Trp of the XRCC1Arg194Trp polymorphism had an increased risk of tumor development (OR = 8.80; confidence interval at 95% (95%CI) = 4.37-17.70; P < 0.001), as did the allele Gln of XRCC1Arg399Gln (OR = 1.01; 95%CI = 0.53-1.93; P = 0.971). Comparison of overall survival of patients did not show significant differences. We suggest that XRCC1Arg194Trp and XRCC1Arg399Gln polymorphisms are involved in susceptibility for developing astrocytomas and glioblastomas.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Glioma/genética , Arginina/química , Primers do DNA , Proteínas de Ligação a DNA/química , Glicina/química , Humanos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Triptofano/química , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
5.
Genet Mol Res ; 9(4): 2328-34, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21128213

RESUMO

Glutathione S-transferases (GSTs) constitute a superfamily of ubiquitous multifunctional enzymes that are involved in the cellular detoxification of a large number of endogenous and exogenous chemical agents that have electrophilic functional groups. People who have deficiencies in this family of genes are at increased risk of developing some types of tumors. We examined GSTP1 Ile105Val polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. Patients who had the Val allele of the GSTP1 Ile105Val polymorphism had an increased risk of tumor development (odds ratio = 8.60; 95% confidence interval = 4.74-17.87; P < 0.001). Overall survival of patients did not differ significantly. We suggest that GSTP1 Ile105Val polymorphisms are involved in susceptibility to developing astrocytomas and glioblastomas.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Glutationa Transferase/genética , Isoleucina/genética , Polimorfismo de Nucleotídeo Único , Valina/genética , Adolescente , Adulto , Idoso , Astrocitoma/enzimologia , Sequência de Bases , Neoplasias Encefálicas/enzimologia , Estudos de Casos e Controles , Primers do DNA , Feminino , Glioblastoma/enzimologia , Glutationa Transferase/química , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Adulto Jovem
6.
Genet Mol Res ; 8(4): 1257-63, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19876867

RESUMO

Disruption or loss of tumor suppressor gene TP53 is implicated in the development or progression of almost all different types of human malignancies. Other members of the p53 family have been identified. One member, p73, not only shares a high degree of similarity with p53 in its primary sequence, but also has similar functions. Like p53, p73 can bind to DNA and activate transcription. Using PCR-SSCP and gene sequencing, we analyzed the TP53 and TP73 genes in a case of a grade III anaplastic astrocytoma that progressed to glioblastoma. We found a deletion of AAG at position 595-597 of TP53 (exon 6), resulting in the deletion of Glu 199 in the protein and a genomic polymorphism of TP73, identified as an A-to-G change, at position E8/+15 at intron 8 (IVS8-15A>G). The mutation found at exon 6 of the gene TP53 could be associated with the rapid tumoral progression found in this case, since the mutated p53 may inactivate the wild-type p53 and the p73alpha protein, which was conserved here, leading to an increase in cellular instability.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Adulto , Sequência de Bases , Primers do DNA , Humanos , Masculino , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Proteína Tumoral p73
7.
Neurocirugia (Astur) ; 20(2): 117-23, 2009 Apr.
Artigo em Espanhol | MEDLINE | ID: mdl-19448956

RESUMO

Concurrent deletion at 1p/19q is a common signature of oligodendrogliomas, and it may be identified in low-grade tumours (grade II) suggesting it represents an early event in the development of these brain neoplasms. Additional non-random changes primarily involve CDKN2A, PTEN and EGFR. Identification of all of these genetic changes has become an additional parameter in the evaluation of the clinical patients' prognosis, including good response to conventional chemotherapy. Multiple ligation-dependent probe amplification (MLPA) analysis is a new methodology that allows an easy identification of the oligodendrogliomas' abnormalities in a single step. No need of the respective constitutional DNA from each patient is another advantage of this method. We used MLPA kits P088 and P105 to determine the molecular characteristics of a series of 40 oligodendrogliomas. Deletions at l p and 19q were identified in 45% and 65% of cases, respectively. Alterations of EGFR, CDKN2A, ERBB2, PTEN and TP53 were also identified in variable frequencies among 7% to 35% of tumours. These findings demonstrate that MLPA is a reliable technique to the detection of molecular genetic changes in oligodendrogliomas.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 1/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Oligodendroglioma/diagnóstico , Oligodendroglioma/genética , Humanos , Oligodendroglioma/patologia , Prognóstico , Kit de Reagentes para Diagnóstico
8.
Genet Mol Res ; 8(1): 8-18, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19224462

RESUMO

The p53 tumor suppressor gene is the most frequently mutated gene in human cancer; this gene is mutated in up to 50% of human tumors. It has a critical role in the cell cycle, apoptosis and cell senescence, and it participates in many crucial physiological and pathological processes. Polymorphisms of p53 have been suggested to be associated with genetically determined susceptibility in various types of cancer. Another process involved with the development and progression of tumors is DNA hypermethylation. Aberrant methylation of the promoter is an alternative epigenetic change in genetic mechanisms, leading to tumor suppressor gene inactivation. In the present study, we examined the TP53 Arg72Pro and Pro47Ser polymorphisms using PCR-RFLP and the pattern of methylation of the p53 gene by methylation-specific PCR in 90 extra-axial brain tumor samples. Patients who had the allele Pro of the TP53 Arg72Pro polymorphism had an increased risk of tumor development (odds ratio, OR = 3.23; confidence interval at 95%, 95%CI = 1.71-6.08; P = 0.003), as did the allele Ser of TP53 Pro47Ser polymorphism (OR = 1.28; 95%CI = 0.03-2.10; P = 0.01). Comparison of overall survival of patients did not show significant differences. In the analysis of DNA methylation, we observed that 37.5% of meningiomas, 30% of schwannomas and 52.6% of metastases were hypermethylated, suggesting that methylation is important for tumor progression. We suggest that TP53 Pro47Ser and Arg72Pro polymorphisms and DNA hypermethylation are involved in susceptibility for developing extra-axial brain tumors.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA/genética , Genes p53/genética , Meningioma/genética , Estudos de Casos e Controles , Códon , Predisposição Genética para Doença , Humanos , Neurilemoma/genética , Reação em Cadeia da Polimerase , Polimorfismo Genético
9.
Biocell ; 32(3): 237-243, Dec. 2008. ilus, tab
Artigo em Inglês | LILACS | ID: lil-541105

RESUMO

Gastric cancer is one of the most common malignancies. DNA methylation is implicated in DNA mismatch repair genes deficiency. In the present study, we evaluated the methylation status of MLH1, MSH2, MSH6 and PMS2 in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosal of gastric cancer patients from Northern Brazil. We found that none of the nonneoplastic samples showed methylation of any gene promoter and 50% of gastric cancer samples showed at least one methylated gene promoter. Methylation frequencies of MLH1, MSH2, MSH6 and PMS2 promoter were 21.74%, 17.39%, 0% and 28.26% respectively in gastric cancer samples. MLH1 and PMS2 methylation were associated with neoplastic samples compared to nonneoplastic ones. PMS2 methylation was associated with diffuse- and intestinal-type cancer compared with normal controls. Intestinal-type cancer showed significant association with MLH1 methylation. Diffuse-type cancer was significantly associated with MSH2 methylation. Our findings show differential gene methylation in tumoral tissue, which allows us to conclude that methylation is associated with gastric carcinogenesis. Methylation of mismatch repair genes was associated with gastric carcinogenesis and may be a helpful tool for diagnosis, prognosis and therapies. However, MSH6 does not seem to be regulated by methylation in our samples.


Assuntos
Humanos , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Metilação de DNA , Neoplasias Gástricas/genética , Reparo de Erro de Pareamento de DNA , Análise de Sequência de DNA , Brasil , Enzimas Reparadoras do DNA/genética , Regiões Promotoras Genéticas
10.
Braz J Med Biol Res ; 41(6): 539-43, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18622497

RESUMO

Gastric cancer is the forth most frequent malignancy and the second most common cause of cancer death worldwide. DNA methylation is the most studied epigenetic alteration, occurring through a methyl radical addition to the cytosine base adjacent to guanine. Many tumor genes are inactivated by DNA methylation in gastric cancer. We evaluated the DNA methylation status of ANAPC1, CDKN2A and TP53 by methylation-specific PCR in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosa in individuals from Northern Brazil. All gastric cancer samples were advanced stage adenocarcinomas. Gastric samples were surgically obtained at the João de Barros Barreto University Hospital, State of Pará, and were stored at -80 degrees C before DNA extraction. Patients had never been submitted to chemotherapy or radiotherapy, nor did they have any other diagnosed cancer. None of the gastric cancer samples presented methylated DNA sequences for ANAPC1 and TP53. CDKN2A methylation was not detected in any normal gastric mucosa; however, the CDKN2A promoter was methylated in 30.4% of gastric cancer samples, with 35% methylation in diffuse-type and 26.9% in intestinal-type cancers. CDKN2A methylation was associated with the carcinogenesis process for ~30% diffuse-type and intestinal-type compared to non-neoplastic samples. Thus, ANAPC1 and TP53 methylation was probably not implicated in gastric carcinogenesis in our samples. CDKN2A can be implicated in the carcinogenesis process of only a subset of gastric neoplasias.


Assuntos
Adenocarcinoma/genética , Metilação de DNA/genética , Genes p16 , Genes p53 , Neoplasias Gástricas/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
11.
Genet Mol Res ; 7(2): 451-9, 2008 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-18551412

RESUMO

Cancer is one of the most common and severe problems in clinical medicine, and nervous system tumors represent about 2% of the types of cancer. The central role of the nervous system in the maintenance of vital activities and the functional consequences of the loss of neurons can explain how severe brain cancers are. The cell cycle is a highly complex process, with a wide number of regulatory proteins involved, and such proteins can suffer alterations that transform normal cells into malignant ones. The INK4 family members (CDK inhibitors) are the cell cycle regulators that block the progression of the cycle through the R point, causing an arrest in G1 stage. The p14ARF (alternative reading frame) gene is a tumor suppressor that inhibits p53 degradation during the progression of the cell cycle. The PTEN gene is related to the induction of growth suppression through cell cycle arrest, to apoptosis and to the inhibition of cell adhesion and migration. The purpose of the present study was to assess the mutational state of the genes p14ARF, p15INK4b, p16INK4a, and PTEN in 64 human nervous system tumor samples. Homozygous deletions were found in exon 2 of the p15INK4b gene and exon 3 of the p16INK4a gene in two schwannomas. Three samples showed a guanine deletion (63 codon) which led to a loss of heterozygosity in the p15 gene, and no alterations could be seen in the PTEN gene. Although the group of patients was heterogeneous, our results are in accordance with other different studies that indicate that homozygous deletion and loss of heterozygosity in the INK4 family members are frequently observed in nervous system tumors.


Assuntos
Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias do Sistema Nervoso/genética , PTEN Fosfo-Hidrolase/genética , Proteína Supressora de Tumor p14ARF/genética , Análise Mutacional de DNA/métodos , Deleção de Genes , Homozigoto , Humanos , Perda de Heterozigosidade , Neoplasias do Sistema Nervoso/patologia , Reação em Cadeia da Polimerase
12.
Braz. j. med. biol. res ; 41(6): 539-543, June 2008. ilus, tab
Artigo em Inglês | LILACS | ID: lil-485848

RESUMO

Gastric cancer is the forth most frequent malignancy and the second most common cause of cancer death worldwide. DNA methylation is the most studied epigenetic alteration, occurring through a methyl radical addition to the cytosine base adjacent to guanine. Many tumor genes are inactivated by DNA methylation in gastric cancer. We evaluated the DNA methylation status of ANAPC1, CDKN2A and TP53 by methylation-specific PCR in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosa in individuals from Northern Brazil. All gastric cancer samples were advanced stage adenocarcinomas. Gastric samples were surgically obtained at the João de Barros Barreto University Hospital, State of Pará, and were stored at -80°C before DNA extraction. Patients had never been submitted to chemotherapy or radiotherapy, nor did they have any other diagnosed cancer. None of the gastric cancer samples presented methylated DNA sequences for ANAPC1 and TP53. CDKN2A methylation was not detected in any normal gastric mucosa; however, the CDKN2A promoter was methylated in 30.4 percent of gastric cancer samples, with 35 percent methylation in diffuse-type and 26.9 percent in intestinal-type cancers. CDKN2A methylation was associated with the carcinogenesis process for ~30 percent diffuse-type and intestinal-type compared to non-neoplastic samples. Thus, ANAPC1 and TP53 methylation was probably not implicated in gastric carcinogenesis in our samples. CDKN2A can be implicated in the carcinogenesis process of only a subset of gastric neoplasias.


Assuntos
Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adenocarcinoma/genética , Metilação de DNA/genética , Neoplasias Gástricas/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Estudos de Casos e Controles , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
13.
Genet Mol Res ; 7(1): 207-16, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18393224

RESUMO

The TP53 tumor suppressor gene codifies a protein responsible for preventing cells with genetic damage from growing and dividing by blocking cell growth or apoptosis pathways. A common single nucleotide polymorphism (SNP) in TP53 codon 72 (Arg72Pro) induces a 15-fold decrease of apoptosis-inducing ability and has been associated with susceptibility to human cancers. Recently, another TP53 SNP at codon 47 (Pro47Ser) was reported to have a low apoptosis-inducing ability; however, there are no association studies between this SNP and cancer. Aiming to study the role of TP53 Pro47Ser and Arg72Pro on glioma susceptibility and oncologic prognosis of patients, we investigated the genotype distribution of these SNPs in 94 gliomas (81 astrocytomas, 8 ependymomas and 5 oligodendrogliomas) and in 100 healthy subjects by the polymerase chain reaction-restriction fragment length polymorphism approach. Chi-square and Fisher exact test comparisons for genotype distributions and allele frequencies did not reveal any significant difference between patients and control groups. Overall and disease-free survivals were calculated by the Kaplan-Meier method, and the log-rank test was used for comparisons, but no significant statistical difference was observed between the two groups. Our data suggest that TP53 Pro47Ser and Arg72Pro SNPs are not involved either in susceptibility to developing gliomas or in patient survival, at least in the Brazilian population.


Assuntos
Glioma/genética , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Adolescente , Adulto , Idoso , Apoptose/genética , Brasil , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Frequência do Gene , Genes p53 , Predisposição Genética para Doença , Genótipo , Glioma/etiologia , Glioma/mortalidade , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida
14.
Genet. mol. res. (Online) ; 7(1): 207-216, Jan. 2008. ilus, tab
Artigo em Inglês | LILACS | ID: lil-553787

RESUMO

The TP53 tumor suppressor gene codifies a protein responsible for preventing cells with genetic damage from growing and dividing by blocking cell growth or apoptosis pathways. A common single nucleotide polymorphism (SNP) in TP53 codon 72 (Arg72Pro) induces a 15-fold decrease of apoptosis-inducing ability and has been associated with susceptibility to human cancers. Recently, another TP53 SNP at codon 47 (Pro47Ser) was reported to have a low apoptosis-inducing ability; however, there are no association studies between this SNP and cancer. Aiming to study the role of TP53 Pro47Ser and Arg72Pro on glioma susceptibility and oncologic prognosis of patients, we investigated the genotype distribution of these SNPs in 94 gliomas (81 astrocytomas, 8 ependymomas and 5 oligodendrogliomas) and in 100 healthy subjects by the polymerase chain reaction-restriction fragment length polymorphism approach. Chi-square and Fisher exact test comparisons for genotype distributions and allele frequencies did not reveal any significant difference between patients and control groups. Overall and disease-free survivals were calculated by the Kaplan-Meier method, and the log-rank test was used for comparisons, but no significant statistical difference was observed between the two groups. Our data suggest that TP53 Pro47Ser and Arg72Pro SNPs are not involved either in susceptibility to developing gliomas or in patient survival, at least in the Brazilian population.


Assuntos
Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Adulto , Pessoa de Meia-Idade , Glioma/genética , Polimorfismo de Nucleotídeo Único , /genética , Apoptose/genética , Brasil , Estudos de Casos e Controles , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Glioma/etiologia , Glioma/mortalidade , Prognóstico , Análise de Sobrevida
15.
Genet. mol. res. (Online) ; 7(2): 451-459, 2008. tab, ilus
Artigo em Inglês | LILACS | ID: lil-640993

RESUMO

The cancer is one of the most common and severe problems in clinical medicine, and nervous system tumors represent about 2% of the types of cancer. The central role of the nervous system in the maintenance of vital activities and the functional consequences of the loss of neurons can explain how severe brain cancers are. The cell cycle is a highly complex process, with a wide number of regulatory proteins involved, and such proteins can suffer alterations that transform normal cells into malignant ones. The INK4 family members (CDK inhibitors) are the cell cycle regulators that block the progression of the cycle through the R point, causing an arrest in G1 stage. The p14ARF (alternative reading frame) gene is a tumor suppressor that inhibits p53 degradation during the progression of the cell cycle. The PTEN gene is related to the induction of growth suppression through cell cycle arrest, to apoptosis and to the inhibition of cell adhesion and migration. The purpose of the present study was to assess the mutational state of the genes p14ARF, p15INK4b, p16INK4a, and PTEN in 64 human nervous system tumor samples. Homozygous deletions were found in exon 2 of the p15INK4b gene and exon 3 of the p16INK4a gene in two schwannomas. Three samples showed a guanine deletion (63 codon) which led to a loss of heterozygosity in the p15 gene, and no alterations could be seen in the PTEN gene. Although the group of patients was heterogeneous, our results are in accordance with other different studies that indicate that homozygous deletion and loss of heterozygosity in the INK4 family members are frequently observed in nervous system tumors.


Assuntos
Humanos , /genética , /genética , Neoplasias do Sistema Nervoso/genética , /genética , Análise Mutacional de DNA/métodos , Deleção de Genes , Homozigoto , Perda de Heterozigosidade , Neoplasias do Sistema Nervoso/patologia , Reação em Cadeia da Polimerase , PTEN Fosfo-Hidrolase
16.
Neoplasma ; 54(2): 123-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17319784

RESUMO

The DAPK1 gene works as a regulator of apoptosis and is frequently inactivated in cancer by aberrant promoter hypermethylation. Loss of DAPK1 expression is associated with a selective advantage for tumor cells to resist apoptotic stimuli, allowing them to separate from the original tumor; from this point of view, DAPK1 could be considered a tumor metastases inhibitor gene. To verify the participation of DAPK1 silencing in cerebral invasion, we analyzed its promoter methylation status in a series of 28 samples from cerebral metastases using MSP and sequencing of the MSP-product. We have found hypermethylation in 53.6% (15/28) metastatic tumor samples as well as in 27.8% (5/18) of its peripheral blood samples. Our data suggest an important role of DAPK1 for silencing through promoter CpG island hypermethylation in the development of brain metastases from solid tumors. The detection of aberrant hypermethylation on DAPK1 promoter from peripheral blood samples has potential clinical implications as a tumor prognosis marker.


Assuntos
Proteínas Reguladoras de Apoptose/sangue , Proteínas Reguladoras de Apoptose/genética , Neoplasias Encefálicas/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/sangue , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Metilação de DNA , Regiões Promotoras Genéticas , Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/secundário , Ilhas de CpG , DNA de Neoplasias/genética , Proteínas Quinases Associadas com Morte Celular , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos
17.
Genet Mol Res ; 6(4): 1019-25, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-18273794

RESUMO

Gliomas are the most common tumors of the central nervous system. In spite of the marked advances in the characterization of the molecular pathogenesis of gliomas, these tumors remain incurable and, in most of the cases, resistant to treatments, due to their molecular heterogeneity. Gene PAX6, which encodes a transcription factor that plays an important role in the development of the central nervous system, was recently recognized as a tumor suppressor in gliomas. The objective of the present study was to analyze the mutational status of the coding and regulating regions of PAX6 in 94 gliomas: 81 astrocytomas (11 grade I, 23 grade II, 8 grade III, and 39 grade IV glioblastomas), 5 oligodendrogliomas (3 grade II, and 2 grade III), and 8 ependymomas (5 grade II, and 3 grade III). Two regulating regions (SX250 and EIE) and the 11 coding regions (exons 4-13, plus exon 5a resulting from alternative splicing) of gene PAX6 were analyzed and no mutation was found. Therefore, we conclude that the tumor suppressor role of PAX6, reported in previous studies on gliomas, is not due to mutation in its coding and regulating regions, suggesting the involvement of epigenetic mechanisms in the silencing of PAX6 in these tumors.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Proteínas do Olho/genética , Glioma/genética , Proteínas de Homeodomínio/genética , Mutação , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Idoso , Astrocitoma/genética , Sequência de Bases , Criança , Pré-Escolar , Análise Mutacional de DNA , Primers do DNA/genética , DNA de Neoplasias/genética , Ependimoma/genética , Epigênese Genética , Feminino , Inativação Gênica , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Oligodendroglioma/genética , Fator de Transcrição PAX6 , Reação em Cadeia da Polimerase
18.
Genet. mol. res. (Online) ; 6(4): 1019-1025, 2007. tab
Artigo em Inglês | LILACS | ID: lil-520048

RESUMO

Gliomas are the most common tumors of the central nervous system. In spite of the marked advances in the characterization of the molecular pathogenesis of gliomas, these tumors remain incurable and, in most of the cases, resistant to treatments, due to their molecular heterogeneity. Gene PAX6, which encodes a transcription factor that plays an important role in the development of the central nervous system, was recently recognized as a tumor suppressor in gliomas. The objective of the present study was to analyze the mutational status of the coding and regulating regions of PAX6 in 94 gliomas: 81 astrocytomas (11 grade I, 23 grade II, 8 grade III, and 39 grade IV glioblastomas), 5 oligodendrogliomas (3 grade II, and 2 grade III), and 8 ependymomas (5 grade II, and 3 grade III). Two regulating regions (SX250 and EIE) and the 11 coding regions (exons 4-13, plus exon 5a resulting from alternative splicing) of gene PAX6 were analyzed and no mutation was found. Therefore, we conclude that the tumor suppressor role of PAX6, reported in previous studies on gliomas, is not due to mutation in its coding and regulating regions, suggesting the involvement of epigenetic mechanisms in the silencing of PAX6 in these tumors.


Assuntos
Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Adulto , Pessoa de Meia-Idade , DNA de Neoplasias/genética , Glioma/genética , Mutação , Neoplasias do Sistema Nervoso Central/genética , Proteínas Repressoras/genética , Proteínas de Homeodomínio/genética , Proteínas do Olho/genética , Astrocitoma , Sequência de Bases , Análise Mutacional de DNA , Epigênese Genética , Ependimoma/genética , Fatores de Transcrição Box Pareados/genética , Inativação Gênica , Oligodendroglioma/genética , Reação em Cadeia da Polimerase , Primers do DNA/genética
19.
Clin Exp Med ; 6(4): 166-70, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17191108

RESUMO

Fibroadenoma (FA) is a benign breast tumour that occurs in about 25% of women. Cytogenetic studies suggest that numerical chromosomal aberrations may contribute to tumorigenesis, but chromosomal instability is still poorly characterised in breast cancer. The aim of this study was to investigate numerical alterations of chromosome 21 in 15 breast FAs. All samples were analysed by classical cytogenetics and by fluorescence in situ hybridisation (FISH) for chromosome 21 DNA sequences. Classical cytogenetics analysis showed that all cells were diploidies with modal number varying between 43 and 47 chromosomes, and clonal chromosome alterations in 46.7% of tumours. Clonal numerical alterations involved, preferentially, chromosomes 8, 10, 12, 16 and 21. FISH analysis showed a statistically significant difference for chromosome 21 monosomy between seven samples and control group. This monosomy varied from 24.5% to 43.5% of analysed cells. The presence of chromosomal alterations in FAs may be a consequence of the proliferation process and is probably not related to the aetiology of this type of lesion. The study of benign proliferations and comparison with chromosome alterations in their malignant counterparts should result in an understanding of the genes acting in cell proliferation alone and those that cause these cells to both undergo malignant transformation and become invasive.


Assuntos
Aneuploidia , Neoplasias da Mama/genética , Cromossomos Humanos Par 21/genética , Fibroadenoma/genética , Hibridização in Situ Fluorescente , Adolescente , Adulto , Análise Citogenética , Feminino , Humanos , Monossomia , Estatística como Assunto
20.
Clin Exp Med ; 5(4): 161-8, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16362795

RESUMO

Gastric cancer is the second most frequent type of neoplasia and also the second most common cause of death in the world. TP53 codon 72, which produces variant proteins with an arginine (Arg) or proline (Pro), has been reported to be associated with cancers of the lung, oesophagus, stomach and cervix. Werner's syndrome (WS) is a premature ageing disease caused by a mutation in the WRN gene. The WRN protein acts as a DNA helicase and as an exonuclease. WRN codon 1367 produces variant proteins with an Arg or cysteine (Cys). This polymorphism has been studied, in order to understand the clinical impact of the molecular variants in WS and in age-related disorders. In the present study, the TP53 codon 72 and the WRN codon 1367 polymorphisms were investigated in 54 gastric adenocarcinoma patients (31 diffuse-type and 25 intestinal-type) and 54 controls. DNA samples were extracted, and PCR-RFLP was utilised for genotyping TP53 codon 72 and WRN codon 1367. The allele frequencies of the TP53 polymorphism were: Arg=0.74 and Pro=0.26. The allele frequencies of the WRN polymorphism were: Cys=0.73 and Arg=0.27. The crude genotypic frequencies in gastric cancer patients were similar to those of the controls, but in the WRN codon 1367 polymorphisms the mean age tended to be higher in the Arg/Arg genotypes. There also was an association, although not statistically significant, between the presence of Helicobacter pylori and the genotypes Cys/Cys and Cys/Arg and a higher percentage of cardia cancer among the Arg/Arg genotypes, and of non-cardia cancer among genotypes Cys/Cys and Cys/Arg. These findings may be a reflection of differences in the interaction between WRN codon 1367 polymorphisms and local factors in the stomach. To our knowledge, this is the first study to examine a genetic polymorphism of the WRN gene in cancer. The precise mechanisms of action of the TP53 and WRN polymorphisms involved in the aetiopathogeny of this disease need further investigation.


Assuntos
Adenocarcinoma/genética , Códon , DNA Helicases/genética , Genes p53 , Polimorfismo Genético , Neoplasias Gástricas/genética , Sequência de Bases , Brasil , Primers do DNA , Exodesoxirribonucleases , Humanos , Reação em Cadeia da Polimerase , RecQ Helicases , Helicase da Síndrome de Werner
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA