Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1059020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909316

RESUMO

Fibroblast growth factor 21 (FGF21) is a hormone involved in the regulation of lipid, glucose, and energy metabolism. Although it is released mainly from the liver, in recent years it has been shown that it is a "myokine", synthesized in skeletal muscles after exercise and stress conditions through an Akt-dependent pathway and secreted for mediating autocrine and endocrine roles. To date, the molecular mechanism for the pathophysiological regulation of FGF21 production in skeletal muscle is not totally understood. We have previously demonstrated that muscle membrane depolarization controls gene expression through extracellular ATP (eATP) signaling, by a mechanism defined as "Excitation-Transcription coupling". eATP signaling regulates the expression and secretion of interleukin 6, a well-defined myokine, and activates the Akt/mTOR signaling pathway. This work aimed to study the effect of electrical stimulation in the regulation of both production and secretion of skeletal muscle FGF21, through eATP signaling and PI3K/Akt pathway. Our results show that electrical stimulation increases both mRNA and protein (intracellular and secreted) levels of FGF21, dependent on an extracellular ATP signaling mechanism in skeletal muscle. Using pharmacological inhibitors, we demonstrated that FGF21 production and secretion from muscle requires the activation of the P2YR/PI3K/Akt/mTOR signaling pathway. These results confirm skeletal muscle as a source of FGF21 in physiological conditions and unveil a new molecular mechanism for regulating FGF21 production in this tissue. Our results will allow to identify new molecular targets to understand the regulation of FGF21 both in physiological and pathological conditions, such as exercise, aging, insulin resistance, and Duchenne muscular dystrophy, all characterized by an alteration in both FGF21 levels and ATP signaling components. These data reinforce that eATP signaling is a relevant mechanism for myokine expression in skeletal muscle.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Trifosfato de Adenosina/metabolismo , Estimulação Elétrica
2.
ARS med. (Santiago, En línea) ; 46(4): 25-31, dic. 07, 2021.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1366312

RESUMO

Introducción: la enseñanza de cursos de ciencias básicas en carreras de la salud es un desafío por no estar directa e inmediatamente rela-cionada con el ámbito profesional. Por otra parte, las condiciones de estrés que ha impuesto el trabajo a distancia requiere de metodologías motivantes, y, que a su vez permitan una evaluación significativa. Objetivos: reportar las adaptaciones metodológicas y los resultados de una adaptación local de la metodología de especificaciones de las calificaciones y retroalimentación del trabajo. Métodos: se aplica una metodología de formación basada en la retroalimentación en el curso de Física para estudiantes de Tecnología Médica (N=106) durante un semestre. Las calificaciones promedio de los estudiantes fueron comparadas con las obtenidas en años anteriores. Para evaluar el desempeño docente se realizaron 2 encuestas a los estudiantes. El cumplimiento de los logros de aprendizaje se midió mediante auto-evaluación (escala likert 1 a 5) al inicio y término de cada uno de los cuatro capítulos. Resultados: las reprobaciones y eliminaciones de estudiantes en el curso fueron menores a años anteriores, siendo las notas significativamente mayores subiendo desde 4,89 a 6,29 (escala de 1 a 7, p<0,001). Los estudiantes se mostraron en un 95% satisfechos con el desempeño docente y finalmente, la auto-evaluación de logros de aprendizaje mostró un aumento promedio de 1 punto. Conclusiones: la metodología de evaluación basada en especificaciones adaptada a dos entregas y con evaluaciones en una escala no-binaria mejoró el rendimiento, los logros de los aprendizajes esperados y la motivación de los estudiantes.


Background: Teaching basic science courses in health careers is a challenge because these courses are not directly linked to professional practice. On the other hand, the stressful conditions imposed by distance work require motivating methodologies and a meaningful evaluation. Objectives: To report the methodological adaptations and the results of a local adaptation of the specifications grading and feedback methodology. Methods: A training methodology based on feedback is applied in the Physics course for Medical Technology students (N = 106) during one semester. We compared the students' average grades to those obtained in previous years with the same topics. To evaluate the teaching performance, we conducted two student surveys. We measure compliance with learning achievements by self-assessment (Likert scale 1 to 5) at the beginning and end of each of the four chapters. Results: Failures and eliminations of students in the course were lower than previous years, with significantly higher grades from 4.89 to 6.29 (p <0.001). The students were 95% satisfied with the teaching performance, and finally, the self-evaluation of learning achievements showed an average increase of 1 point. Conclusion: The evaluation methodology based on specifications adapted to two deliveries and evaluations on a non-binary scale improved the performance, expected learning achievements, and students' motivation.

3.
Diabetologia ; 64(6): 1389-1401, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33710396

RESUMO

AIMS/HYPOTHESIS: Skeletal muscle is a key target organ for insulin's actions and is the main regulator of blood glucose. In obese individuals and animal models, there is a chronic low-grade inflammatory state affecting highly metabolic organs, leading to insulin resistance. We have described that adult skeletal muscle fibres can release ATP to the extracellular medium through pannexin-1 (PANX1) channels. Besides, it is known that high extracellular ATP concentrations can act as an inflammatory signal. Here, we propose that skeletal muscle fibres from obese mice release high levels of ATP, through PANX1 channels, promoting inflammation and insulin resistance in muscle cells. METHODS: C57BL/6J mice were fed with normal control diet (NCD) or high-fat diet (HFD) for 8 weeks. Muscle fibres were isolated from flexor digitorum brevis (FDB) muscle. PANX1-knockdown FDB fibres were obtained by in vivo electroporation of a short hairpin RNA Panx1 plasmid. We analysed extracellular ATP levels in a luciferin/luciferase assay. Gene expression was studied with quantitative real-time PCR (qPCR). Protein levels were evaluated by immunoblots, ELISA and immunofluorescence. Insulin sensitivity was analysed in a 2-NBDG (fluorescent glucose analogue) uptake assay, immunoblots and IPGTT. RESULTS: HFD-fed mice showed significant weight gain and insulin resistance compared with NCD-fed mice. IL-6, IL-1ß and TNF-α protein levels were increased in FDB muscle from obese mice. We observed high levels of extracellular ATP in muscle fibres from obese mice (197 ± 55 pmol ATP/µg RNA) compared with controls (32 ± 10 pmol ATP/µg RNA). ATP release in obese mice fibres was reduced by application of 100 µmol/l oleamide (OLE) and 5 µmol/l carbenoxolone (CBX), both PANX1 blockers. mRNA levels of genes linked to inflammation were reduced using OLE, CBX or 2 U/ml ATPase apyrase in muscle fibres from HFD-fed mice. In fibres from mice with pannexin-1 knockdown, we observed diminished extracellular ATP levels (78 ± 10 pmol ATP/µg RNA vs 252 ± 37 pmol ATP/µg RNA in control mice) and a lower expression of inflammatory markers. Moreover, a single pulse of 300 µmol/l ATP to fibres from control mice reduced insulin-mediated 2-NBDG uptake and promoted an elevation in mRNA levels of inflammatory markers. PANX-1 protein levels were increased two- to threefold in skeletal muscle from obese mice compared with control mice. Incubation with CBX increased Akt activation and 2-NBDG uptake in HFD fibres after insulin stimulation, rescuing the insulin resistance condition. Finally, in vivo treatment of HFD-fed mice with CBX (i.p. injection of 10 mg/kg each day) for 14 days, compared with PBS, reduced extracellular ATP levels in skeletal muscle fibres (51 ± 10 pmol ATP/µg RNA vs 222 ± 28 pmol ATP/µg RNA in PBS-treated mice), diminished inflammation and improved glycaemic management. CONCLUSIONS/INTERPRETATION: In this work, we propose a novel mechanism for the development of inflammation and insulin resistance in the skeletal muscle of obese mice. We found that high extracellular ATP levels, released by overexpressed PANX1 channels, lead to an inflammatory state and insulin resistance in skeletal muscle fibres of obese mice.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/metabolismo , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Obesidade/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Obesos , Obesidade/etiologia
4.
J Diabetes Res ; 2017: 1328573, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286777

RESUMO

Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle) glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines). We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS). In conditioned media from human myotubes incubated with/without insulin (100 nmol/L) for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets (p < 0.05). Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Animais , Quimiocina CCL5/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Ratos , Ratos Wistar
5.
Skelet Muscle ; 6: 15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069569

RESUMO

BACKGROUND: Electrical activity regulates the expression of skeletal muscle genes by a process known as "excitation-transcription" (E-T) coupling. We have demonstrated that release of adenosine 5'-triphosphate (ATP) during depolarization activates membrane P2X/P2Y receptors, being the fundamental mediators between electrical stimulation, slow intracellular calcium transients, and gene expression. We propose that this signaling pathway would require the proper coordination between the voltage sensor (dihydropyridine receptor, DHPR), pannexin 1 channels (Panx1, ATP release conduit), nucleotide receptors, and other signaling molecules. The goal of this study was to assess protein-protein interactions within the E-T machinery and to look for novel constituents in order to characterize the signaling complex. METHODS: Newborn derived myotubes, adult fibers, or triad fractions from rat or mouse skeletal muscles were used. Co-immunoprecipitation, 2D blue native SDS/PAGE, confocal microscopy z-axis reconstruction, and proximity ligation assays were combined to assess the physical proximity of the putative complex interactors. An L6 cell line overexpressing Panx1 (L6-Panx1) was developed to study the influence of some of the complex interactors in modulation of gene expression. RESULTS: Panx1, DHPR, P2Y2 receptor (P2Y2R), and dystrophin co-immunoprecipitated in the different preparations assessed. 2D blue native SDS/PAGE showed that DHPR, Panx1, P2Y2R and caveolin-3 (Cav3) belong to the same multiprotein complex. We observed co-localization and protein-protein proximity between DHPR, Panx1, P2Y2R, and Cav3 in adult fibers and in the L6-Panx1 cell line. We found a very restricted location of Panx1 and Cav3 in a putative T-tubule zone near the sarcolemma, while DHPR was highly expressed all along the transverse (T)-tubule. By Panx1 overexpression, extracellular ATP levels were increased both at rest and after electrical stimulation. Basal mRNA levels of the early gene cfos and the oxidative metabolism markers citrate synthase and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were significantly increased by Panx1 overexpression. Interleukin 6 expression evoked by 20-Hz electrical stimulation (270 pulses, 0.3 ms each) was also significantly upregulated in L6-Panx1 cells. CONCLUSIONS: We propose the existence of a relevant multiprotein complex that coordinates events involved in E-T coupling. Unveiling the molecular actors involved in the regulation of gene expression will contribute to the understanding and treatment of skeletal muscle disorders due to wrong-expressed proteins, as well as to improve skeletal muscle performance.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Linhagem Celular , Conexinas/genética , Conexinas/metabolismo , Distrofina/genética , Distrofina/metabolismo , Estimulação Elétrica , Regulação da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Complexos Multiproteicos , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Ratos Wistar , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Ativação Transcricional , Transfecção
6.
PLoS One ; 10(6): e0129882, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053483

RESUMO

During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.


Assuntos
Trifosfato de Adenosina/metabolismo , Estimulação Elétrica , Glicoproteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/fisiologia , NADPH Oxidases/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Animais , Espaço Extracelular/metabolismo , Camundongos , NADPH Oxidase 2
7.
Exerc Sport Sci Rev ; 42(3): 110-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24949845

RESUMO

Tetanic electrical stimulation releases adenosine triphosphate (ATP) from muscle fibers through pannexin-1 channels in a frequency-dependent manner; extracellular ATP activates signals that ultimately regulate gene expression and is able to increase glucose transport through activation of P2Y receptors, phosphatidylinositol 3-kinase, Akt, and AS160. We hypothesize that this mechanism is an important link between exercise and the regulation of muscle fiber plasticity and metabolism.


Assuntos
Trifosfato de Adenosina/metabolismo , Exercício Físico/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Transporte Biológico , Canais de Cálcio Tipo L/metabolismo , Conexinas/metabolismo , Estimulação Elétrica , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucleotídeos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais
8.
PLoS One ; 8(11): e75340, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24282497

RESUMO

ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.


Assuntos
Trifosfato de Adenosina/farmacologia , Apoptose/efeitos dos fármacos , Músculo Esquelético/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Conexinas/metabolismo , Estimulação Elétrica , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofias Musculares/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteína X Associada a bcl-2/genética
9.
J Cell Sci ; 126(Pt 5): 1189-98, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23321639

RESUMO

An important pending question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype as slow or fast twitch muscle fibers. We have previously shown that voltage-gated L-type calcium channel (Cav1.1) acts as a voltage sensor for activation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3]-dependent Ca(2+) signals that regulates gene expression. ATP released by muscle cells after electrical stimulation through pannexin-1 channels plays a key role in this process. We show now that stimulation frequency determines both ATP release and Ins(1,4,5)P3 production in adult skeletal muscle and that Cav1.1 and pannexin-1 colocalize in the transverse tubules. Both ATP release and increased Ins(1,4,5)P3 was seen in flexor digitorum brevis fibers stimulated with 270 pulses at 20 Hz, but not at 90 Hz. 20 Hz stimulation induced transcriptional changes related to fast-to-slow muscle fiber phenotype transition that required ATP release. Addition of 30 µM ATP to fibers induced the same transcriptional changes observed after 20 Hz stimulation. Myotubes lacking the Cav1.1-α1 subunit released almost no ATP after electrical stimulation, showing that Cav1.1 has a central role in this process. In adult muscle fibers, ATP release and the transcriptional changes produced by 20 Hz stimulation were blocked by both the Cav1.1 antagonist nifedipine (25 µM) and by the Cav1.1 agonist (-)S-BayK 8644 (10 µM). We propose a new role for Cav1.1, independent of its calcium channel activity, in the activation of signaling pathways allowing muscle fibers to decipher the frequency of electrical stimulation and to activate specific transcriptional programs that define their phenotype.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Músculo Esquelético/metabolismo , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Estimulação Elétrica , Expressão Gênica , Imunoprecipitação , Técnicas In Vitro , Camundongos , Músculo Esquelético/efeitos dos fármacos , Nifedipino/farmacologia , Reação em Cadeia da Polimerase em Tempo Real
10.
J Biol Chem ; 284(50): 34490-505, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19822518

RESUMO

ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca(2+) concentration, with an EC(50) value of 7.8 +/- 3.1 microm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 mum suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y(2) receptor and pannexin-1. As reported previously for electrical stimulation, 500 mum ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca(2+) homeostasis and muscle physiology.


Assuntos
Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Expressão Gênica , Músculo Esquelético/fisiologia , Animais , Apirase/farmacologia , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , Conexinas/genética , Conexinas/metabolismo , Estimulação Elétrica , Interleucina-6/genética , Interleucina-6/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Cloreto de Potássio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Suramina/farmacologia
11.
Mol Cell Biol ; 26(11): 4316-26, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16705181

RESUMO

Gli3 is a zinc finger transcription factor proteolytically processed into a truncated repressor lacking C-terminal activation domains. Gli3 processing is stimulated by protein kinase A (PKA) and inhibited by Hedgehog signaling, a major signaling pathway in vertebrate development and disease. We show here that multisite glycogen synthase kinase 3beta (GSK3beta) phosphorylation and ubiquitination by SCFbetaTrCP are required for Gli3 processing. We identified multiple betaTrCP-binding sites related to the DSGX2-4S motif in Gli3, which are intertwined with PKA and GSK3beta sites, and SCFbetaTrCP target lysines that are essential for processing. Our results support a simple model whereby PKA triggers a cascade of Gli3 phosphorylation by GSK3beta and CK1 that leads to direct betaTrCP binding and ubiquitination by SCFbetaTrCP. Binding of betaTrCP to Gli3 N- and C-terminal domains lacking DSGX2-4S-related motifs was also observed, which could reflect indirect interaction via other components of Hedgehog signaling, such as the tumor suppressor Sufu. Gli3 therefore joins a small set of transcription factors whose processing is regulated by the ubiquitin-proteasome pathway. Our study sheds light on the role of PKA phosphorylation in Gli3 processing and will help to analyze how dose-dependent tuning of Gli3 processing is achieved by Hedgehog signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/química , Quinase 3 da Glicogênio Sintase/química , Glicogênio Sintase Quinase 3 beta , Células HeLa , Humanos , Fatores de Transcrição Kruppel-Like/química , Lisina/metabolismo , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Proteínas do Tecido Nervoso/química , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteína Gli3 com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA