Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22000, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38081972

RESUMO

The histone deacetylase sirtuin 6 (SIRT6) has been endowed with anti-cancer capabilities in many tumor types. Here, we investigate the impact of SIRT6-overexpression (SIRT6-OE) in Delta16HER2 mice, which are a bona fide model of HER2-positive breast cancer. After an initial delay in the tumor onset, SIRT6-OE induces a more aggressive phenotype of Delta16HER2 tumors promoting the formation of higher number of tumor foci and metastases than controls. This phenotype of SIRT6-OE tumors is associated with cancer stem cell (CSC)-like features and tumor dormancy, and low senescence and oxidative DNA damage. Accordingly, a sub-set of HER2-positive breast cancer patients with concurrent SIRT6-OE has a significant poorer relapse-free survival (RFS) probability than patients with low expression of SIRT6. ChIP-seq, RNA-seq and RT-PCR experiments indicate that SIRT6-OE represses the expression of the T-box transcription factor 3 (Tbx3) by deacetylation of H3K9ac. Accordingly, loss-of-function mutations of TBX3 or low TBX3 expression levels are predictive of poor prognosis in HER2-positive breast cancer patients. Our work indicates that high levels of SIRT6 are indicative of poor prognosis and high risk of metastasis in HER2-positive breast cancer and suggests further investigation of TBX3 as a downstream target of SIRT6 and co-marker of poor-prognosis. Our results point to a breast cancer subtype-specific effect of SIRT6 and warrant future studies dissecting the mechanisms of SIRT6 regulation in different breast cancer subtypes.


Assuntos
Neoplasias da Mama , Sirtuínas , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/patologia , Recidiva Local de Neoplasia , Sirtuínas/metabolismo , Doença Crônica
2.
Cancer Rep (Hoboken) ; 6(1): e1625, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35546267

RESUMO

BACKGROUND: Early-life stress due to poor parental care has been suggested to increase cancer risk, though, so far, no experimental evidence established a link between defective parental behavior and spontaneous tumorigenesis in progeny. Essential maternal behavior is regulated, in particular, by the oxytocin (OT) hormonal circuit, which in turn responds to stimuli from the offspring and impinges on the central nervous systems. METHODS: By providing L-368,899 OT receptor (OTR) inhibitor to lactating mothers, we set up a model of defective maternal care in p53 knockout mice. RESULTS: The progeny of these dams showed, later in life, higher cortisol levels, shortened life span and increased tumorigenic potential of bone marrow cells (BMC). Notably, these phenotypes were transmitted to the following generation. CONCLUSIONS: Therefore, the inhibition of OT function in mothers is a novel paradigm of early-life stress that is inherited across generations and increases cancer risk in tumor-prone mice.


Assuntos
Ocitocina , Estresse Psicológico , Animais , Feminino , Camundongos , Carcinogênese , Lactação , Camundongos Knockout , Ocitocina/metabolismo , Ocitocina/farmacologia , Proteína Supressora de Tumor p53/genética
3.
Cancer Gene Ther ; 30(5): 671-682, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36536122

RESUMO

Acute promyelocytic leukemia (APL) is an aggressive subtype of acute myeloid leukemia (AML) in which the PML/RARα fusion protein exerts oncogenic activities by recruiting repressive complexes to the promoter of specific target genes. Other epigenetic perturbations, as alterations of histone H3 lysine 9 trimethylation (H3K9me3), have been frequently found in AMLs and are associated with leukemogenesis and leukemia progression. Here, we characterized the epigenomic effects of maltonis, a novel maltol-derived molecule, in APL cells. We demonstrate that maltonis treatments induce a profound remodulation of the histone code, reducing global H3K9me3 signal and modulating other histone post-translational modifications. Transcriptomic and epigenomic analyses revealed that maltonis exposure induces changes of genes expression associated with a genomic redistribution of histone H3 lysine 4 trimethylation (H3K4me3) and lysine 27 acetylation (H3K27ac). Upregulation of interferon alpha and gamma response and downregulation of c-MYC target genes, in function of c-MYC reduced expression (monitored in all the hematopoietic neoplasms tested), represent the most significant modulated pathways. These data demonstrate the ability of maltonis to epigenetically reprogram the gene expression profile of APL cells, inducing an intriguing antiviral-like response, concomitantly with the downregulation of c-MYC-related pathways, thus making it an attractive candidate for antileukemic therapy.


Assuntos
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Humanos , Histonas/genética , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Regulação para Baixo , Antivirais/farmacologia , Epigenômica , Lisina/genética , Lisina/metabolismo , Lisina/farmacologia , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , Diferenciação Celular
4.
Aging Cell ; 21(3): e13545, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35166014

RESUMO

Frailty affects the physical, cognitive, and social domains exposing older adults to an increased risk of cardiovascular disease and death. The mechanisms linking frailty and cardiovascular outcomes are mostly unknown. Here, we studied the association of abundance (flow cytometry) and gene expression profile (RNAseq) of stem/progenitor cells (HSPCs) and molecular markers of inflammaging (ELISA) with the cardiorespiratory phenotype and prospective adverse events of individuals classified according to levels of frailty. Two cohorts of older adults were enrolled in the study. In a cohort of pre-frail 35 individuals (average age: 75 years), a physical frailty score above the median identified subjects with initial alterations in cardiorespiratory function. RNA sequencing revealed S100A8/A9 upregulation in HSPCs from the bone marrow (>10-fold) and peripheral blood (>200-fold) of individuals with greater physical frailty. Moreover higher frailty was associated with increased alarmins S100A8/A9 and inflammatory cytokines in peripheral blood. We then studied a cohort of 104 more frail individuals (average age: 81 years) with multidomain health deficits. Reduced levels of circulating HSPCs and increased S100A8/A9 concentrations were independently associated with the frailty index. Remarkably, low HSPCs and high S100A8/A9 simultaneously predicted major adverse cardiovascular events at 1-year follow-up after adjustment for age and frailty index. In conclusion, inflammaging characterized by alarmin and pro-inflammatory cytokines in pre-frail individuals is mirrored by the pauperization of HSPCs in frail older people with comorbidities. S100A8/A9 is upregulated within HSPCs, identifying a phenotype that associates with poor cardiovascular outcomes.


Assuntos
Alarminas , Fragilidade , Idoso , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Citocinas/metabolismo , Fragilidade/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Estudos Prospectivos
5.
Cells ; 10(1)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467440

RESUMO

Human amniotic fluid stem cells (hAFSCs) are broadly multipotent immature progenitor cells with high self-renewal and no tumorigenic properties. These cells, even amplified, present very variable morphology, density, intracellular composition and stemness potential, and this heterogeneity can hinder their characterization and potential use in regenerative medicine. Celector® (Stem Sel ltd.) is a new technology that exploits the Non-Equilibrium Earth Gravity Assisted Field Flow Fractionation principles to characterize and label-free sort stem cells based on their solely physical characteristics without any manipulation. Viable cells are collected and used for further studies or direct applications. In order to understand the intrapopulation heterogeneity, various fractions of hAFSCs were isolated using the Celector® profile and live imaging feature. The gene expression profile of each fraction was analysed using whole-transcriptome sequencing (RNAseq). Gene Set Enrichment Analysis identified significant differential expression in pathways related to Stemness, DNA repair, E2F targets, G2M checkpoint, hypoxia, EM transition, mTORC1 signalling, Unfold Protein Response and p53 signalling. These differences were validated by RT-PCR, immunofluorescence and differentiation assays. Interestingly, the different fractions showed distinct and unique stemness properties. These results suggest the existence of deep intra-population differences that can influence the stemness profile of hAFSCs. This study represents a proof-of-concept of the importance of selecting certain cellular fractions with the highest potential to use in regenerative medicine.


Assuntos
Líquido Amniótico/citologia , Células-Tronco/citologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Reparo do DNA , Perfilação da Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Células-Tronco Multipotentes/citologia , RNA-Seq , Medicina Regenerativa , Transdução de Sinais , Transcriptoma
6.
Mech Ageing Dev ; 191: 111328, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32800796

RESUMO

Human amniotic fluid stem cells (hAFSCs) are an emerging tool in regenerative medicine because they have the ability to differentiate into various lineages and efficiently improve tissue regeneration with no risk of tumorigenesis. Although hAFSCs are easily isolated from the amniotic fluid, their expansion ex vivo is limited by a quick exhaustion which impairs replicative potential and differentiation capacity. In this study, we evaluate various aging features of hAFSCs cultured at different oxygen concentrations. We show that low oxygen (1% O2) extends stemness and proliferative features, and delays induction of senescence-associated markers. Hypoxic hAFSCs activate a metabolic shift and increase resistance to pro-apoptotic stimuli. Moreover, we observe that cells at low oxygen remain capable of osteogenesis for prolonged periods of time, suggesting a more youthful phenotype. Together, these data demonstrate that low oxygen concentrations might improve the generation of functional hAFSCs for therapeutic use by delaying the onset of cellular aging.


Assuntos
Líquido Amniótico/citologia , Senescência Celular , Células-Tronco/metabolismo , Hipóxia Celular , Humanos , Células-Tronco/citologia
7.
Biofactors ; 46(1): 106-117, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31625201

RESUMO

The cartilage tissue engineering associated with stem cell-related therapies is becoming very interesting since adult articular cartilage has limited intrinsic capacity for regeneration upon injury. Amniotic fluid stem cells (AFSC) have been shown to produce exosomes with growth factors and immunomodulating molecules that could stop tissue degradation and induce cartilage repair. Based on this state of the art, the main aim of this study was to explore the efficacy of the secreted exosomes, compared to their AFSC source, in MIA-induced animal model of osteoarthritis mimicking a chronic and degenerative process, where inflammation is also involved and lead to irreversible joint damage. Exosomes, obtained by the use of a commercial kit, prior to the injection in animal knee joints, were characterized for the presence of typical markers and HGF, TGFß, and IDO. Then, analyses were performed by histology, immunohistochemistry, and behavioral scoring up to 3 weeks after the treatment. Exosome-treated defects showed enhanced pain tolerance level and improved histological scores than the AFSC-treated defects. Indeed by 3 weeks, TGFß-rich exosome samples induced an almost complete restoration of cartilage with good surface regularity and with the characteristic of hyaline cartilage. Moreover, cells positive for resolving macrophage marker were more easily detectable into exosome-treated joints. Therefore, a modulating role for exosomes on macrophage polarization is conceivable, as demonstrated also by experiments performed on THP1 macrophages. In conclusion, this study demonstrates for the first time the efficacy of human AFSC exosomes in counteract cartilage damage, showing a positive correlation with their TGFß content.


Assuntos
Líquido Amniótico/metabolismo , Exossomos/metabolismo , Osteoartrite/terapia , Transplante de Células-Tronco , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Animais , Modelos Animais de Doenças , Humanos , Ácido Iodoacético , Osteoartrite/metabolismo , Ratos
8.
Aging (Albany NY) ; 10(10): 2911-2934, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30362963

RESUMO

Mesenchymal stem cells have emerged as an important tool that can be used for tissue regeneration thanks to their easy preparation, differentiation potential and immunomodulatory activity. However, an extensive culture of stem cells in vitro prior to clinical use can lead to oxidative stress that can modulate different stem cells properties, such as self-renewal, proliferation, differentiation and senescence. The aim of this study was to investigate the aging process occurring during in vitro expansion of stem cells, obtained from amniotic fluids (AFSC) at similar gestational age.The analysis of 21 AFSC samples allowed to classify them in groups with different levels of stemness properties. In summary, the expression of pluripotency genes and the proliferation rate were inversely correlated with the content of reactive oxygen species (ROS), DNA damage signs and the onset premature aging markers, including accumulation of prelamin A, the lamin A immature form. Interestingly, a specific source of ROS, the NADPH oxidase isoform 4 (Nox4), can localize into PML nuclear bodies (PML-NB), where it associates to prelamin A. Besides, Nox4 post translational modification, involved in PML-NB localization, is linked to its degradation pathway, as it is also for prelamin A, thus possibly modulating the premature aging phenotype occurrence.


Assuntos
Líquido Amniótico/citologia , Núcleo Celular/enzimologia , Senescência Celular , Lamina Tipo A/metabolismo , Células-Tronco Mesenquimais/enzimologia , NADPH Oxidase 4/metabolismo , Estresse Oxidativo , Adulto , Núcleo Celular/genética , Proliferação de Células , Células Cultivadas , Senescência Celular/genética , Feminino , Regulação da Expressão Gênica , Humanos , Oxirredução , Fenótipo , Gravidez , Transdução de Sinais
9.
Biofactors ; 44(2): 158-167, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29341292

RESUMO

It is widely accepted that the therapeutic potential of stem cells can be largely mediated by paracrine factors, also included into exosomes. Thus, stem cell-derived exosomes represent a major therapeutic option in regenerative medicine avoiding, if compared to stem cells graft, abnormal differentiation and tumor formation. Exosomes derived from mesenchymal stem cells (MSC) induce damaged tissue repair, and can also exert immunomodulatory effects on the differentiation, activation and function of different lymphocytes. Therefore, MSC exosomes can be considered as a potential treatment for inflammatory diseases and also an ideal candidate for allogeneic therapy due to their low immunogenicity. Amniotic fluid stem cells (AFSCs) are broadly multipotent, can be expanded in culture, and can be easily cryopreserved in cellular banks. In this study, morphology, phenotype, and protein content of exosomes released into amniotic fluid in vivo and from AFSC during in vitro culture (conditioned medium) were examined. We found that AFSC-derived exosomes present different molecules than amniotic fluid ones, some of them involved in immunomodulation, such transforming growth factor beta and hepatic growth factors. The immunomodulatory effect of AFSC's exosomes on peripheral blood mononuclear cells stimulated with phytohemagglutinin was compared to that of the supernatant produced by such conditioned media deprived of exosomes. We present evidence that the principal effect of AFSC conditioned media (without exosomes) is the induction of apoptosis in lymphocytes, whereas exposure to AFSC-derived exosomes decreases the lymphocyte's proliferation, supporting the hypothesis that the entire secretome of stem cells differently affects immune-response. © 2017 BioFactors, 44(2):158-167, 2018.


Assuntos
Líquido Amniótico/metabolismo , Anti-Inflamatórios/farmacologia , Exossomos/química , Leucócitos Mononucleares/efeitos dos fármacos , Células-Tronco/metabolismo , Adulto , Amniocentese , Líquido Amniótico/química , Líquido Amniótico/citologia , Anti-Inflamatórios/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Feminino , Fator de Crescimento de Hepatócito/isolamento & purificação , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Fito-Hemaglutininas/farmacologia , Gravidez , Segundo Trimestre da Gravidez , Cultura Primária de Células , Medicina Regenerativa/métodos , Células-Tronco/citologia , Fator de Crescimento Transformador beta/isolamento & purificação , Fator de Crescimento Transformador beta/farmacologia
10.
Cytotherapy ; 19(8): 1002-1012, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28571656

RESUMO

BACKGROUND AIMS: Current procedures for collection of human amniotic fluid stem cells (hAFSCs) indicate that cells cultured in a flask for 2 weeks can then be used for research. However, hAFSCs can be retrieved directly from a small amount of amniotic fluid that can be obtained at the time of diagnostic amniocentesis. The aim of this study was to determine whether direct freezing of amniotic fluid cells is able to maintain or improve the potential of a sub-population of stem cells. METHODS: We compared the potential of the hAFSCs regarding timing of freezing, cells obtained directly from amniotic fluid aspiration (D samples) and cells cultured in a flask before freezing (C samples). Colony-forming-unit ability, proliferation, morphology, stemness-related marker expression, senescence, apoptosis and differentiation potential of C and D samples were compared. RESULTS: hAFSCs isolated from D samples expressed mesenchymal stem cells markers until later passages, had a good proliferation rate and exhibited differentiation capacity similar to hAFSCs of C samples. Interestingly, direct freezing induced a higher concentration of cells positive for pluripotency stem cell markers, without teratoma formation in vivo. CONCLUSIONS: This study suggests that minimal processing may be adequate for the banking of amniotic fluid cells, avoiding in vitro passages before the storage and exposure to high oxygen concentration, which affect stem cell properties. This technique might be a cost-effective and reasonable approach to the process of Good Manufacturing Process accreditation for stem-cell banks.


Assuntos
Líquido Amniótico/citologia , Criopreservação/métodos , Manejo de Espécimes/métodos , Células-Tronco/citologia , Adulto , Apoptose , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Feminino , Congelamento , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA