Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ibrain ; 10(2): 123-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915951

RESUMO

Neurodegenerative diseases represent an increasingly burdensome challenge of the past decade, primarily driven by the global aging of the population. Ongoing efforts focus on implementing diverse strategies to mitigate the adverse effects of neurodegeneration, with the goal of decelerating the pathology progression. Notably, in recent years, it has emerged that the use of nanoparticles (NPs), particularly those obtained through green chemical processes, could constitute a promising therapeutic approach. Green NPs, exclusively sourced from phytochemicals, are deemed safer compared to NPs synthetized through conventional chemical route. In this study, the effects of green chemistry-derived silver NPs (AgNPs) were assessed in neuroblastoma cells, SHSY-5Y, which are considered a pivotal model for investigating neurodegenerative diseases. Specifically, we used two different concentrations (0.5 and 1 µM) of AgNPs and two time points (24 and 48 h) to evaluate the impact on neuroblastoma cells by observing viability reduction and intracellular calcium production, especially using 1 µM at 48 h. Furthermore, investigation using atomic force microscopy (AFM) unveiled an alteration in Young's modulus due to the reorganization of cortical actin following exposure to green AgNPs. This evidence was further corroborated by confocal microscopy acquisitions as well as coherency and density analyses on actin fibers. Our in vitro findings suggest the potential efficacy of green AgNPs against neurodegeneration; therefore, further in vivo studies are imperative to optimize possible therapeutic protocols.

2.
Nanomaterials (Basel) ; 13(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37836360

RESUMO

Radiotherapy (RT) involves delivering X-ray beams to the tumor site to trigger DNA damage. In this approach, it is fundamental to preserve healthy cells and to confine the X-ray beam only to the malignant cells. The integration of gold nanoparticles (AuNPs) in the X-ray methodology could be considered a powerful tool to improve the efficacy of RT. Indeed, AuNPs have proven to be excellent allies in contrasting tumor pathology upon RT due to their high photoelectric absorption coefficient and unique physiochemical properties. However, an analysis of their physical and morphological reaction to X-ray exposure is necessary to fully understand the AuNPs' behavior upon irradiation before treating the cells, since there are currently no studies on the evaluation of potential NP morphological changes upon specific irradiations. In this work, we synthesized two differently shaped AuNPs adopting two different techniques to achieve either spherical or star-shaped AuNPs. The spherical AuNPs were obtained with the Turkevich-Frens method, while the star-shaped AuNPs (AuNSs) involved a seed-mediated approach. We then characterized all AuNPs with Transmission Electron Microscopy (TEM), Uv-Vis spectroscopy, Dynamic Light Scattering (DLS), zeta potential and Fourier Transform Infrared (FTIR) spectroscopy. The next step involved the treatment of AuNPs with two different doses of X-radiation commonly used in RT, namely 1.8 Gy and 2 Gy, respectively. Following the X-rays' exposure, the AuNPs were further characterized to investigate their possible physicochemical and morphological alterations induced with the X-rays. We found that AuNPs do not undergo any alteration, concluding that they can be safely used in RT treatments. Lastly, the actin rearrangements of THP-1 monocytes treated with AuNPs were also assessed in terms of coherency. This is a key proof to evaluate the possible activation of an immune response, which still represents a big limitation for the clinical translation of NPs.

3.
Front Oncol ; 12: 983507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091138

RESUMO

The complexity of the microenvironment effects on cell response, show accumulating evidence that glioblastoma (GBM) migration and invasiveness are influenced by the mechanical rigidity of their surroundings. The epithelial-mesenchymal transition (EMT) is a well-recognized driving force of the invasive behavior of cancer. However, the primary mechanisms of EMT initiation and progression remain unclear. We have previously showed that certain substrate stiffness can selectively stimulate human GBM U251-MG and GL15 glioblastoma cell lines motility. The present study unifies several known EMT mediators to uncover the reason of the regulation and response to these stiffnesses. Our results revealed that changing the rigidity of the mechanical environment tuned the response of both cell lines through change in morphological features, epithelial-mesenchymal markers (E-, N-Cadherin), EGFR and ROS expressions in an interrelated manner. Specifically, a stiffer microenvironment induced a mesenchymal cell shape, a more fragmented morphology, higher intracellular cytosolic ROS expression and lower mitochondrial ROS. Finally, we observed that cells more motile showed a more depolarized mitochondrial membrane potential. Unravelling the process that regulates GBM cells' infiltrative behavior could provide new opportunities for identification of new targets and less invasive approaches for treatment.

4.
Bioinorg Chem Appl ; 2022: 2343167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35140761

RESUMO

Among all the inorganic nanomaterials used in commercial products, industry, and medicine, the amorphous silica nanoparticles (SiO2 NPs) appeared to be often tolerated in living organisms. However, despite several toxicity studies, some concerns about the exposure to high doses of SiO2 NPs with different sizes were raised. Then, we used the microemulsion method to obtain stable SiO2 NPs having different sizes (110 nm, 50 nm, and 25 nm). In addition, a new one-pot green synthetic route using leaves extract of Laurus nobilis was performed, obtaining monodispersed ultrasmall SiO2 NPs without the use of dangerous chemicals. The NPs achieved by microemulsion were further functionalized with amino groups making the NPs surface positively charged. Then, high doses of SiO2 NPs (1 mg/mL and 3 mg/mL) achieved from the two routes, having different sizes and surface charges, were used to assess their impact on human alveolar cells (A549), being the best cell model mimicking the inhalation route. Cell viability and caspase-3 induction were analyzed as well as the cellular uptake, obtaining that the smallest (25 nm) and positive-charged NPs were more able to induce cytotoxicity, reaching values of about 60% of cell death. Surprisingly, cells incubated with green SiO2 NPs did not show strong toxicity, and 70% of them remained vital. This result was unusual for ultrasmall nanoobjects, generally highly toxic. The actin reorganization, nuclear morphology alteration, and cell membrane elasticity analyses confirmed the trend achieved from the biological assays. The obtained data demonstrate that the increase in cellular softness, i.e., the decrease in Young's modulus, could be associated with the smaller and positive NPs, recording values of about 3 kPa. On the contrary, green NPs triggered a slight decrease of stiffness values (c.a. 6 kPa) compared to the untreated cells (c.a. 8 kPa). As the softer cells were implicated in cancer progression and metastasization, this evidence strongly supported the idea of a link between the cell elasticity and physicochemical properties of NPs that, in turn, influenced the interaction with the cell membrane. Thus, the green SiO2 NPs compromised cells to a lesser extent than the other SiO2 NPs types. In this scenario, the elasticity evaluation could be an interesting tool to understand the toxicity of NPs with the aim of predicting some pathological phenomena associated with their exposure.

5.
Materials (Basel) ; 15(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35160720

RESUMO

The use of silver nanoparticles (Ag NPs) in the biomedical field deserves a mindful analysis of the possible inflammatory response which could limit their use in the clinic. Despite the anti-cancer properties of Ag NPs having been widely demonstrated, there are still few studies concerning their involvement in the activation of specific inflammatory pathways. The inflammatory outcome depends on the synthetic route used in the NPs production, in which toxic reagents are employed. In this work, we compared two types of Ag NPs, obtained by two different chemical routes: conventional synthesis using sodium citrate and a green protocol based on leaf extracts as a source of reduction and capping agents. A careful physicochemical characterization was carried out showing spherical and stable Ag NPs with an average size between 20 nm and 35 nm for conventional and green Ag NPs respectively. Then, we evaluated their ability to induce the activation of inflammation in Human Leukemic Monocytes (THP-1) differentiated into M0 macrophages using 1 µM and 2 µM NPs concentrations (corresponded to 0.1 µg/mL and 0.2 µg/mL respectively) and two-time points (24 h and 48 h). Our results showed a clear difference in Nuclear Factor κB (NF-κb) activation, Interleukins 6-8 (IL-6, IL-8) secretion, Tumor Necrosis Factor-α (TNF-α) and Cyclooxygenase-2 (COX-2) expression exerted by the two kinds of Ag NPs. Green Ag NPs were definitely tolerated by macrophages compared to conventional Ag NPs which induced the activation of all the factors mentioned above. Subsequently, the exposure of breast cancer cell line (MCF-7) to the green Ag NPs showed that they exhibited antitumor activity like the conventional ones, but surprisingly, using the MCF-10A line (not tumoral breast cells) the green Ag NPs did not cause a significant decrease in cell viability.

6.
Cancers (Basel) ; 13(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34298823

RESUMO

BACKGROUND: In recent decades, gold nanoparticle (Au NP)-based cancer therapy has been heavily debated. The physico-chemical properties of AuNPs can be exploited in photothermal therapy, making them a powerful tool for selectively killing cancer cells. However, the synthetic side products and capping agents often induce a strong activation of the inflammatory pathways of macrophages, thus limiting their further applications in vivo. METHODS: Here, we described a green method to obtain stable polyphenol-capped AuNPs (Au NPs@polyphenols), as polyphenols are known for their anti-inflammatory and anticancer properties. These NPs were used in human macrophages to test key inflammation-related markers, such as NF-κB, TNF-α, and interleukins-6 and 8. The results were compared with similar NPs obtained by a traditional chemical route (without the polyphenol coating), proving the potential of Au NPs@polyphenols to strongly promote the shutdown of inflammation. This was useful in developing them for use as heat-synergized tools in the thermal treatment of two types of cancer cells, namely, breast cancer (MCF-7) and neuroblastoma (SH-SY5Y) cells. The cell viability, calcium release, oxidative stress, HSP-70 expression, mitochondrial, and DNA damage, as well as cytoskeleton alteration, were evaluated. RESULTS: Our results clearly demonstrate that the combined strategy markedly exerts anticancer effects against the tested cancer cell, while neither of the single treatments (only heat or only NPs) induced significant changes. CONCLUSIONS: Au NP@polyphenols may be powerful agents in cancer treatment.

7.
Molecules ; 26(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068079

RESUMO

Noble metals nanoparticles (NPs) and metal oxide NPs are widely used in different fields of application and commercial products, exposing living organisms to their potential adverse effects. Recent evidences suggest their presence in the aquifers water and consequently in drinking water. In this work, we have carefully synthesized four types of NPs, namely, silver and gold NPs (Ag NPs and Au NPs) and silica and titanium dioxide NPs (SiO2 NPs and TiO2 NPs) having a similar size and negatively charged surfaces. The synthesis of Ag NPs and Au NPs was carried out by colloidal route using silver nitrate (AgNO3) and tetrachloroauric (III) acid (HAuCl4) while SiO2 NPs and TiO2 NPs were achieved by ternary microemulsion and sol-gel routes, respectively. Once the characterization of NPs was carried out in order to assess their physico-chemical properties, their impact on living cells was studied. We used the human colorectal adenocarcinoma cells (Caco-2), known as the best representative intestinal epithelial barrier model to understand the effects triggered by NPs through ingestion. Then, we moved to explore how water contamination caused by NPs can be lowered by the ability of three species of aquatic moss, namely, Leptodictyum riparium, Vesicularia ferriei, and Taxiphyllum barbieri, to absorb them. The experiments were conducted using two concentrations of NPs (100 µM and 500 Μm as metal content) and two time points (24 h and 48 h), showing a capture rate dependent on the moss species and NPs type. Then, the selected moss species, able to actively capture NPs, appear as a powerful tool capable to purify water from nanostructured materials, and then, to reduce the toxicity associated to the ingestion of contaminated drinking water.


Assuntos
Absorção Fisico-Química , Organismos Aquáticos/metabolismo , Briófitas/metabolismo , Fenômenos Químicos , Compostos Inorgânicos/química , Mucosa Intestinal/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Modelos Biológicos , Organismos Aquáticos/efeitos dos fármacos , Briófitas/efeitos dos fármacos , Células CACO-2 , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Difusão Dinâmica da Luz , Células Germinativas Vegetais/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Espectrofotometria Ultravioleta , Eletricidade Estática , Titânio/química , Titânio/toxicidade , Difração de Raios X
8.
Nanomaterials (Basel) ; 10(6)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486479

RESUMO

: In the past years, there is a growing interest in the application of nanoscaled materials in cancer therapy because of their unique physico-chemical properties. However, the dark side of their usability is limited by their possible toxic behaviour and accumulation in living organisms. Starting from this assumption, the search for a green alternative to produce nanoparticles (NPs) or the discovery of green molecules, is a challenge in order to obtain safe materials. In particular, gold (Au NPs) and silver (Ag NPs) NPs are particularly suitable because of their unique physico-chemical properties, in particular plasmonic behaviour that makes them useful as active anticancer agents. These NPs can be obtained by green approaches, alternative to conventional chemical methods, owing to the use of phytochemicals, carbohydrates, and other biomolecules present in plants, fungi, and bacteria, reducing toxic effects. In addition, we analysed the use of green and stimuli-responsive polymeric bio-inspired nanovesicles, mainly used in drug delivery applications that have revolutionised the way of drugs supply. Finally, we reported the last examples on the use of metallic and Au NPs as self-propelling systems as new concept of nanorobot, which is able to respond and move towards specific physical or chemical stimuli in biological entities.

9.
Curr Pharm Des ; 25(13): 1477-1489, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258061

RESUMO

The current strategies to treat different kinds of cancer are mainly based on chemotherapy, surgery and radiation therapy. Unfortunately, these approaches are not specific and rather invasive as well. In this scenario, metal nano-shells, in particular gold-based nanoshells, offer interesting perspectives in the effort to counteract tumor cells, due to their unique ability to tune Surface Plasmon Resonance in different light-absorbing ranges. In particular, the Visible and Near Infrared Regions of the electromagnetic spectrum are able to penetrate through tissues. In this way, the light absorbed by the gold nanoshell at a specific wavelength is converted into heat, inducing photothermal ablation in treated cancer cells. Furthermore, inert gold shells can be easily functionalized with different types of molecules in order to bind cellular targets in a selective manner. This review summarizes the current state-of-art of nanosystems embodying gold shells, regarding methods of synthesis, bio-conjugations, bio-distribution, imaging and photothermal effects (in vitro and in vivo), providing new insights for the development of multifunctional antitumor drugs.


Assuntos
Ouro , Hipertermia Induzida , Nanoconchas , Neoplasias/terapia , Fototerapia , Linhagem Celular Tumoral , Humanos , Ressonância de Plasmônio de Superfície
10.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340471

RESUMO

The side effects induced by nanoparticle exposure at a cellular level are one of the priority research topics due to the steady increase in the use of nanoparticles (NPs). Recently, the focus on cellular morphology and mechanical behavior is gaining relevance in order to fully understand the cytotoxic mechanisms. In this regard, we have evaluated the morphomechanical alteration in human breast adenocarcinoma cell line (MCF-7) exposed to TiO2NPs at two different concentrations (25 and 50 µg/mL) and two time points (24 and 48 h). By using confocal and atomic force microscopy, we demonstrated that TiO2NP exposure induces significant alterations in cellular membrane elasticity, due to actin proteins rearrangement in cytoskeleton, as calculated in correspondence to nuclear and cytoplasmic compartments. In this work, we have emphasized the alteration in mechanical properties of the cellular membrane, induced by nanoparticle exposure.


Assuntos
Núcleo Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citotoxinas/toxicidade , Nanopartículas/toxicidade , Titânio/toxicidade , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/ultraestrutura , Fenômenos Biomecânicos , Membrana Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Citosol/ultraestrutura , Citotoxinas/química , Elasticidade/efeitos dos fármacos , Humanos , Células MCF-7 , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Titânio/química
11.
Molecules ; 24(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141939

RESUMO

Lauric acid is a green derivate that is abundant in some seeds such as coconut oil where it represents the most relevant fatty acid. Some studies have emphasized its anticancer effect due to apoptosis induction. In addition, the lauric acid is a Phase Change Material having a melting temperature of about 43.2 °C: this property makes it a powerful tool in cancer treatment by hyperthermal stress, generally induced at 43 °C. However, the direct use of lauric acid can have some controversial effects, and it can undergo degradation phenomena in the extracellular environment. For this reason, we have encapsulated lauric acid in a silica shell with a one-step and reproducible synthetic route in order to obtain a monodispersed SiO2@LA NPs with a good encapsulation efficiency. We have used these NPs to expose breast cancer cell lines (MCF-7) at different concentrations in combination with hyperthermal treatment. Uptake, viability, oxidative stress induction, caspases levels, and morphometric parameters were analyzed. These nanovectors showed double action in anticancer treatments thanks to the synergic effect of temperature and lauric acid activity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Composição de Medicamentos , Ácidos Láuricos/uso terapêutico , Dióxido de Silício/química , Temperatura , Actinas/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Varredura Diferencial de Calorimetria , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Difusão Dinâmica da Luz , Feminino , Humanos , Ácidos Láuricos/farmacologia , Células MCF-7 , Nanopartículas/química , Nanopartículas/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Espectrometria por Raios X
12.
Cancers (Basel) ; 10(7)2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012949

RESUMO

The Epithelial to mesenchymal transition (EMT) is the process that drives epithelial tumor cells to acquire an invasive phenotype. The role of transforming growth factor-ß1 (TGF-ß1) in EMT is still debated. We used confocal laser scanning microscopy and scanning force spectroscopy to perform a morphomechanical analysis on epithelial breast cancer cells (MCF-7), comparing them before and after TGF-ß1 exogenous stimulation (5 ng/mL for 48 h). After TGF-ß1 treatment, loss of cell⁻cell adherence (mainly due to the reduction of E-cadherin expression of about 24%) and disaggregation of actin cortical fibers were observed in treated MCF-7. In addition, TGF-ß1 induced an alteration of MCF-7 nuclei morphology as well as a decrease in the Young's modulus, owing to a rearrangement that involved the cytoskeletal networks and the nuclear region. These relevant variations in morphological features and mechanical properties, elicited by TGF-ß1, suggested an increased capacity of MCF-7 to migrate, which was confirmed by a wound healing assay. By means of our biophysical approach, we highlighted the malignant progression of breast cancer cells induced by TGF-ß1 exposure. We are confirming TGF-ß1's role in EMT by means of morphomechanical evidence that could represent a turning point in understanding the molecular mechanisms involved in cancer progression.

13.
Nanomaterials (Basel) ; 8(5)2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748469

RESUMO

The large use of nanomaterials in many fields of application and commercial products highlights their potential toxicity on living organisms and the environment, despite their physico-chemical properties. Among these, silver nanoparticles (Ag NPs) are involved in biomedical applications such as antibacterial agents, drug delivery vectors and theranostics agents. In this review, we explain the common synthesis routes of Ag NPs using physical, chemical, and biological methods, following their toxicity mechanism in cells. In particular, we analyzed the physiological cellular pathway perturbations in terms of oxidative stress induction, mitochondrial membrane potential alteration, cell death, apoptosis, DNA damage and cytokines secretion after Ag NPs exposure. In addition, their potential anti-cancer activity and theranostic applications are discussed.

14.
Int J Mol Sci ; 20(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597907

RESUMO

The epithelial mesenchymal transition (EMT) is a physiological multistep process involving epithelial cells acquiring a mesenchymal-like phenotype. It is widely demonstrated that EMT is linked to tumor progression and metastasis. The transforming growth factor (TGF)-ß pathways have been widely investigated, but its role in the hepatocarcinoma EMT is still unclear. While the biochemical pathways have been extensively studied, the alteration of biomechanical behavior correlated to cellular phenotype and motility is not yet fully understood. To better define the involvement of TGF-ß1 in the metastatic progression process in different hepatocarcinoma cell lines (HepG2, PLC/PRF/5, HLE), we applied a systematic morphomechanical approach in order to investigate the physical and the structural characteristics. In addition, we evaluated the antitumor effect of LY2157299, a TGF-ßR1 kinase inhibitor, from a biomechanical point of view, using Atomic Force and Confocal Microscopy. Our approach allows for validation of biological data, therefore it may be used in the future as a diagnostic tool to be combined with conventional biomolecular techniques.


Assuntos
Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Mecanotransdução Celular , Fator de Crescimento Transformador beta/metabolismo , Biomarcadores , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Módulo de Elasticidade , Humanos , Neoplasias Hepáticas/patologia , Microscopia de Força Atômica , Gradação de Tumores
15.
Exp Cell Res ; 360(2): 303-309, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28935466

RESUMO

The EMT phenomenon is based on tumour progression. The cells lose their physiologic phenotype and assumed a mesenchymal phenotype characterized by an increased migratory capacity, invasiveness and high resistance to apoptosis. In this process, RHO family regulates the activation or suppression of ROCK (Rho-associated coiled-coil containing protein kinase) which in turn regulates the cytoskeleton dynamics. However, while the biochemical mechanisms are widely investigated, a comprehensive and careful estimation of biomechanical changes has not been extensively addressed. In this work, we used a strong ROCK inhibitor, Y-27632, to evaluate the effects of inhibition on living breast cancer epithelial cells by a biomechanical approach. Atomic Force Microscopy (AFM) was used to estimate changes of cellular elasticity, quantified by Young's modulus parameter. The morphometric alterations were analyzed by AFM topographies and Confocal Laser Scanning Microscopy (CLSM). Our study revealed a significant modification in the Young's modulus after treatment, especially as regards cytoskeletal region. Our evidences suggest that the use of Y-27632 enhanced the cell rigidity, preventing cell migration and arrested the metastasization process representing a potential powerful factor for cancer treatment.


Assuntos
Amidas/farmacologia , Neoplasias da Mama/patologia , Neoplasias da Mama/ultraestrutura , Forma Celular/efeitos dos fármacos , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Módulo de Elasticidade/efeitos dos fármacos , Elasticidade/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Microscopia de Força Atômica , Estresse Mecânico , Células Tumorais Cultivadas
16.
J Mater Sci Mater Med ; 28(8): 120, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28685231

RESUMO

TGFß1 pathway antagonists have been considered promising therapies to attenuate TGFß downstream signals in cancer cells. Inhibiting peptides, as P-17 in this study, are bound to either TGFß1 or its receptors, blocking signal transduction. However, for efficient use of these TGFß1antagonist as target therapeutic tools, improvement in their delivery is required. Here, a plasmid carrying specific shDNA (SHT-DNA), small interfering RNA (siRNA), and the peptide (P-17) were loaded separately into folic acid (FA)-functionalized nano-carriers made of Bovine Serum Albumin (BSA). The two building blocks of the carrier, (BSA and FA) were used because of the high affinity of albumin for liver and for the overexpression of folate receptors on the membrane of hepatocellular carcinoma cells. The empty and the encapsulated carriers were thoroughly investigated to characterize their structure, to evaluate the colloidal stability and the surface functionalization. The entrapment of SHT-DNA, siRNA and P-17, respectively, was demonstrated by morphological and quantitative analysis. Finally, cellular studies were performed to assess the targeting efficiency of the hybrid carriers. These vectors were used because of the high affinity of albumin for liver and for the overexpression of folate receptors on the membrane hepatocellular carcinoma cells. The empty and the encapsulated carriers were thoroughly investigated to characterize their structure, to evaluate the colloidal stability and the surface functionalization. The entrapment of SHT-DNA, siRNA and P-17, respectively, was demonstrated by morphological and quantitative analysis. A novel fabrication of Hybrid Polymeric-Protein Nano-Carriers (HPPNC) for delivering TGF ß1 inhibitors to HCC cells has been developed. SHT-DNA, siRNA and P-17 have been successfully encapsulated. TGF ß1 inhibitors-loaded HPPNC were efficiently uptaken by HLF cells.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Portadores de Fármacos , Neoplasias Hepáticas/tratamento farmacológico , Polímeros/química , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Bovinos , Coloides/química , Sistemas de Liberação de Medicamentos , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/química , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência , Peptídeos/química , RNA Interferente Pequeno/metabolismo , Soroalbumina Bovina , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Hematol Oncol ; 10(1): 16, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086938

RESUMO

BACKGROUND: We have previously shown that in pancreatic ductal adenocarcinoma (PDA) cells, the glycolytic enzyme alpha-enolase (ENO1) also acts as a plasminogen receptor and promotes invasion and metastasis formation. Moreover, ENO1 silencing in PDA cells induces oxidative stress, senescence and profoundly modifies PDA cell metabolism. Although anti-ENO1 antibody inhibits PDA cell migration and invasion, little is known about the role of ENO1 in regulating cell-cell and cell-matrix contacts. We therefore investigated the effect of ENO1 silencing on the modulation of cell morphology, adhesion to matrix substrates, cell invasiveness, and metastatic ability. METHODS: The membrane and cytoskeleton modifications that occurred in ENO1-silenced (shENO1) PDA cells were investigated by a combination of confocal microscopy and atomic force microscopy (AFM). The effect of ENO1 silencing was then evaluated by phenotypic and functional experiments to identify the role of ENO1 in adhesion, migration, and invasion, as well as in senescence and apoptosis. The experimental results were then validated in a mouse model. RESULTS: We observed a significant increase in the roughness of the cell membrane due to ENO1 silencing, a feature associated with an impaired ability to migrate and invade, along with a significant downregulation of proteins involved in cell-cell and cell-matrix adhesion, including alpha v/beta 3 integrin in shENO1 PDA cells. These changes impaired the ability of shENO1 cells to adhere to Collagen I and IV and Fibronectin and caused an increase in RGD-independent adhesion to vitronectin (VN) via urokinase plasminogen activator receptor (uPAR). Binding of uPAR to VN triggers integrin-mediated signals, which result in ERK1-2 and RAC activation, accumulation of ROS, and senescence. In shENO1 cancer cells, the use of an anti-uPAR antibody caused significant reduction of ROS production and senescence. Overall, a decrease of in vitro and in vivo cell migration and invasion of shENO1 PDA cells was observed. CONCLUSION: These data demonstrate that ENO1 promotes PDA survival, migration, and metastasis through cooperation with integrins and uPAR.


Assuntos
Biomarcadores Tumorais/fisiologia , Adesão Celular , Proteínas de Ligação a DNA/fisiologia , Integrina alfaVbeta3/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Fosfopiruvato Hidratase/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Forma Celular , Senescência Celular , Proteínas de Ligação a DNA/genética , Expressão Gênica , Inativação Gênica , Humanos , Integrina alfaVbeta3/metabolismo , Integrinas/metabolismo , Integrinas/fisiologia , Camundongos , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/metabolismo , Fosfopiruvato Hidratase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/fisiologia , Proteínas Supressoras de Tumor/genética
18.
Microsc Res Tech ; 80(1): 109-123, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27324056

RESUMO

This review reports on the combined use of the atomic force microscopy (AFM) and several type of optical/fluorescence/laser scanning microscopy for investigating cells. It is shown that the hybrid systems of AFM with optical-derived microscopies enable to study in detail cell surface properties (such as topography), their mechanical properties (e.g., Young's modulus) mechanotransduction phenomena and allow to gain insight into biological-related pathways and mechanisms in the complex nanoworld of cells. Microsc. Res. Tech. 80:109-123, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Fenômenos Fisiológicos Celulares , Microscopia de Força Atômica , Microscopia , Animais , Linhagem Celular Tumoral , Humanos , Processamento de Imagem Assistida por Computador , Mecanotransdução Celular , Microscopia de Fluorescência , Propriedades de Superfície
19.
Toxicol In Vitro ; 37: 201-210, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27622577

RESUMO

Titanium dioxide nanoparticles (TiO2NPs), in the two crystalline forms, rutile and anatase, have been widely used in many industrial fields, especially in cosmetics. Therefore, a lot of details about their safety issues have been discussed by the scientific community. Many studies have led to a general agreement about TiO2NPs toxicity, in particular for anatase form, but no mechanism details have been proved yet. In this study, data confirm the different toxic potential of rutile and anatase TiO2NPs in two cell lines up to 5nM nanoparticles concentration. Moreover, we evaluated the role of titanium ions released by TiO2NPs in different conditions, at pH=4.5 (the typical lysosomal compartment pH) and at pH=5.5 (the skin physiological pH) in conditions of darkness and light, to mimic the dermal exposure of cosmetics. Anatase nanoparticles were proner to degradation both in the acidic conditions and at skin pH. Our study demonstrates that pH and sunlight are dominant factors to induce oxidative stress, TiO2NPs degradation and toxicity effects.


Assuntos
Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Células A549 , Caspase 3/metabolismo , Humanos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Estresse Oxidativo , Luz Solar , Titânio/química , Titânio/efeitos da radiação
20.
J Control Release ; 172(3): 1111-25, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24096015

RESUMO

Mitochondria represent an attractive subcellular target due to its function particularly important for oxidative damage, calcium metabolism and apoptosis. However, the concept of mitochondrial targeting has been a neglected area so far. The translocator protein (TSPO) represents an interesting subcellular target not only to image disease states overexpressing this protein, but also for a selective mitochondrial drug targeting. Recently, we have delivered in vitro and in vivo small molecule imaging agents into cells overexpressing TSPO by using a family of high-affinity conjugable ligands characterized by 2-phenyl-imidazo[1,2-a]pyridine acetamide structure. As an extension, in the present work we studied the possibility to target and image TSPO with dendrimers. These nano-platforms have unique features, in fact, are prepared with a level of control not reachable with most linear polymers, leading to nearly monodisperse, globular macromolecules with a large number of peripheral groups. As a consequence, they are an ideal delivery vehicle candidate for explicit study of the effects of polymer size, charge, composition, and architecture on biologically relevant properties such as lipid bilayer interactions, cytotoxicity, cellular internalization, and subcellular compartments and organelles interactions. Here, we present the synthesis, characterization, cellular internalization, and mitochondria labeling of a TSPO targeted fourth generation [G(4)-PAMAM] dendrimer nanoparticle labeled with the organic fluorescent dye fluorescein. We comprehensively studied the cellular uptake behavior of these dendrimers, into glioma C6 cell line, under the influence of various endocytosis inhibitors. We found that TSPO targeted-G(4)-PAMAM-FITC dendrimer is quickly taken up by these cells by endocytosis pathways, and moreover specifically targets the mitochondria as evidenced from subcellular fractionation experiments and co-localization studies performed with CAT (Confocal-AFM-TIRF) microscopy.


Assuntos
Proteínas de Transporte/análise , Dendrímeros , Fluoresceína-5-Isotiocianato , Glioma/diagnóstico , Receptores de GABA-A/análise , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Dendrímeros/química , Dendrímeros/metabolismo , Endocitose , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Glioma/metabolismo , Microscopia Confocal , Mitocôndrias/metabolismo , Ratos , Receptores de GABA-A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA