Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 10(12): 3259-3267, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35583002

RESUMO

Photodynamic therapy (PDT) represents a promising treatment modality for a range of cancers and other non-malignant diseases due to its non-invasive nature arising from the light-dependent activation. However, PDT has not been the first-line treatment of cancer thus far as a consequence of, among others, the lack of effective transport and activation strategies, and the undesired side effect caused by skin photosensitisation induced by the "always on" photosensitisers. To overcome this "Achilles' heel", we present herein a non-covalent approach to construct a one-component dynamic supramolecular nanophotosensitising system based on a carefully designed porphyrin. The control of the photoactivities of the resulting supramolecular fibres lies in the spatiotemporal control of the monomer-polymer equilibrium. Both the thermodynamics and kinetics of this nanosystem have been carefully studied by different techniques. Moreover, in vitro and in vivo studies have also been performed, showing that these supramolecular aggregates exhibit facile cell internalisation and progressive disassembly after being endocyted by targeted cells, leading to activation of the photosensitising units and eventually cell death and tumour eradication under photoirradiation.


Assuntos
Nanofibras , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Porfirinas/farmacologia , Porfirinas/uso terapêutico
2.
Chem Commun (Camb) ; 58(5): 669-672, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34919102

RESUMO

A subphthalocyanine substituted with nine tetra(ethylene glycol) chains on the periphery has been synthesised. This novel amphiphilic and cone-shaped compound can self-assemble in water into spherical nanoparticles with a hydrodynamic diameter of 154 nm. These nanoparticles can be taken up readily by cancer cells and localised predominately in lysosomes where they disassemble gradually, leading to activation in fluorescence emission and, photocytotoxicity, showing IC50 values of as low as 1.2 µM.


Assuntos
Fotoquimioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA