Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38133177

RESUMO

Snakebite envenoming can be a life-threatening medical emergency that requires prompt medical intervention to neutralise the effects of venom toxins. Each year up to 138,000 people die from snakebites and threefold more victims suffer life-altering disabilities. The current treatment of snakebite relies solely on antivenom-polyclonal antibodies isolated from the plasma of hyperimmunised animals-which is associated with numerous deficiencies. The ADDovenom project seeks to deliver a novel snakebite therapy, through the use of an innovative protein-based scaffold as a next-generation antivenom. The ADDomer is a megadalton-sized, thermostable synthetic nanoparticle derived from the adenovirus penton base protein; it has 60 high-avidity binding sites to neutralise venom toxins. Here, we outline our experimental strategies to achieve this goal using state-of-the-art protein engineering, expression technology and mass spectrometry, as well as in vitro and in vivo venom neutralisation assays. We anticipate that the approaches described here will produce antivenom with unparalleled efficacy, safety and affordability.


Assuntos
Mordeduras de Serpentes , Toxinas Biológicas , Animais , Humanos , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/complicações , Antivenenos , Sítios de Ligação , Plasma
2.
Toxins (Basel) ; 15(6)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37368658

RESUMO

To improve the characterization of snake venom protein profiles, we report the application of a new generation of proteomic methodology to deeply characterize complex protein mixtures. The new approach, combining a synergic multi-enzymatic and a time-limited digestion (MELD), is a versatile and straightforward protocol previously developed by our group. The higher number of overlapping peptides generated during MELD increases the quality of downstream peptide sequencing and of protein identification. In this context, this work aims at applying the MELD strategy to a venomics purpose for the first time, and especially for the characterization of snake venoms. We used four venoms as the test models for this proof of concept: two Elapidae (Dendroaspis polylepis and Naja naja) and two Viperidae (Bitis arietans and Echis ocellatus). Each venom was reduced and alkylated before being submitted to two different protocols: the classical bottom-up proteomics strategy including a digestion step with trypsin only, or MELD, which combines the activities of trypsin, Glu-C and chymotrypsin with a limited digestion approach. The resulting samples were then injected on an M-Class chromatographic system, and hyphenated to a Q-Exactive Mass Spectrometer. Toxins and protein identification were performed by Peaks Studio X+. The results show that MELD considerably improves the number of sequenced (de novo) peptides and identified peptides from protein databases, leading to the unambiguous identification of a greater number of toxins and proteins. For each venom, MELD was successful, not only in terms of the identification of the major toxins (increasing of sequence coverage), but also concerning the less abundant cellular components (identification of new groups of proteins). In light of these results, MELD represents a credible methodology to be applied as the next generation of proteomics approaches dedicated to venomic analysis. It may open new perspectives for the sequencing and inventorying of the venom arsenal and should expand global knowledge about venom composition.


Assuntos
Proteômica , Viperidae , Animais , Proteômica/métodos , Tripsina/metabolismo , Venenos de Serpentes/química , Elapidae/metabolismo , Proteínas/metabolismo , Viperidae/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Digestão , Venenos Elapídicos/química , Proteoma/análise
3.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199017

RESUMO

Venoms are a rich source of potential lead compounds for drug discovery, and descriptive studies of venom form the first phase of the biodiscovery process. In this study, we investigated the pharmacological potential of crude Pseudocerastes and Eristicophis snake venoms in haematological disorders and cancer treatment. We assessed their antithrombotic potential using fibrinogen thromboelastography, fibrinogen gels with and without protease inhibitors, and colourimetric fibrinolysis assays. These assays indicated that the anticoagulant properties of the venoms are likely induced by the hydrolysis of phospholipids and by selective fibrinogenolysis. Furthermore, while most fibrinogenolysis occurred by the direct activity of snake venom metalloproteases and serine proteases, modest evidence indicated that fibrinogenolytic activity may also be mediated by selective venom phospholipases and an inhibitory venom-derived serine protease. We also found that the Pseudocerastes venoms significantly reduced the viability of human melanoma (MM96L) cells by more than 80%, while it had almost no effect on the healthy neonatal foreskin fibroblasts (NFF) as determined by viability assays. The bioactive properties of these venoms suggest that they contain a number of toxins suitable for downstream pharmacological development as candidates for antithrombotic or anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Fibrinolíticos/farmacologia , Venenos de Serpentes/farmacologia , Venenos de Víboras/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fibrinólise/efeitos dos fármacos , Humanos , Inibidores de Serina Proteinase/farmacologia
4.
Toxins (Basel) ; 13(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540884

RESUMO

Snakes of the genera Pseudocerastes and Eristicophis (Viperidae: Viperinae) are known as the desert vipers due to their association with the arid environments of the Middle East. These species have received limited research attention and little is known about their venom or ecology. In this study, a comprehensive analysis of desert viper venoms was conducted by visualising the venom proteomes via gel electrophoresis and assessing the crude venoms for their cytotoxic, haemotoxic, and neurotoxic properties. Plasmas sourced from human, toad, and chicken were used as models to assess possible prey-linked venom activity. The venoms demonstrated substantial divergence in composition and bioactivity across all experiments. Pseudocerastes urarachnoides venom activated human coagulation factors X and prothrombin and demonstrated potent procoagulant activity in human, toad, and chicken plasmas, in stark contrast to the potent neurotoxic venom of P. fieldi. The venom of E. macmahonii also induced coagulation, though this did not appear to be via the activation of factor X or prothrombin. The coagulant properties of P. fieldi and P. persicus venoms varied among plasmas, demonstrating strong anticoagulant activity in the amphibian and human plasmas but no significant effect in that of bird. This is conjectured to reflect prey-specific toxin activity, though further ecological studies are required to confirm any dietary associations. This study reinforces the notion that phylogenetic relatedness of snakes cannot readily predict venom protein composition or function. The significant venom variation between these species raises serious concerns regarding antivenom paraspecificity. Future assessment of antivenom is crucial.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Comportamento Predatório , Proteínas de Répteis/toxicidade , Mordeduras de Serpentes/metabolismo , Peçonhas/toxicidade , Viperidae/metabolismo , Animais , Anuros , Linhagem Celular Tumoral , Galinhas , Humanos , Masculino , Junção Neuromuscular/fisiopatologia , Proteoma , Proteômica , Proteínas de Répteis/metabolismo , Mordeduras de Serpentes/sangue , Mordeduras de Serpentes/fisiopatologia , Especificidade da Espécie , Peçonhas/metabolismo
5.
Toxicon X ; 6: 100030, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32550585

RESUMO

Four peptides with cytotoxic activity against BRIN-BD11 rat clonal ß-cells were purified from the venom of the black-necked spitting cobra Naja nigricollis using reversed-phase HPLC. The peptides were identified as members of the three-finger superfamily of snake toxins by ESI-MS/MS sequencing of tryptic peptides. The most potent peptide (cytotoxin-1N) showed strong cytotoxic activity against three human tumor-derived cell lines (LC50 = 0.8 ± 0.2 µM for A549 non-small cell lung adenocarcinoma cells; LC50 = 7 ± 1 µM for MDA-MB-231 breast adenocarcinoma cells; and LC50 = 9 ± 1 µM for HT-29 colorectal adenocarcinoma cells). However, all the peptides were to varying degrees cytotoxic against HUVEC human umbilical vein endothelial cells (LC50 in the range 2-22 µM) and cytotoxin-2N was moderately hemolytic (LC50 = 45 ± 3 µM against mouse erythrocytes). The lack of differential activity against cells derived from non-neoplastic tissue limits their potential for development into anti-cancer agents. In addition, two proteins in the venom, identified as isoforms of phospholipase A2, effectively stimulated insulin release from BRIN-BD11 cells (an approximately 6-fold increase in rate compared with 5.6 mM glucose alone) at a concentration (1 µM) that was not cytotoxic to the cells suggesting possible application in therapy for Type 2 diabetes.

6.
PLoS Negl Trop Dis ; 14(6): e0008366, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579606

RESUMO

Snakebite envenoming is a major neglected tropical disease that affects millions of people every year. The only effective treatment against snakebite envenoming consists of unspecified cocktails of polyclonal antibodies purified from the plasma of immunized production animals. Currently, little data exists on the molecular interactions between venom-toxin epitopes and antivenom-antibody paratopes. To address this issue, high-density peptide microarray (hdpm) technology has recently been adapted to the field of toxinology. However, analysis of such valuable datasets requires expert understanding and, thus, complicates its broad application within the field. In the present study, we developed a user-friendly, and high-throughput web application named "Snake Toxin and Antivenom Binding Profiles" (STAB Profiles), to allow straight-forward analysis of hdpm datasets. To test our tool and evaluate its performance with a large dataset, we conducted hdpm assays using all African snake toxin protein sequences available in the UniProt database at the time of study design, together with eight commercial antivenoms in clinical use in Africa, thus representing the largest venom-antivenom dataset to date. Furthermore, we introduced a novel method for evaluating raw signals from a peptide microarray experiment and a data normalization protocol enabling intra-microarray and even inter-microarray chip comparisons. Finally, these data, alongside all the data from previous similar studies by Engmark et al., were preprocessed according to our newly developed protocol and made publicly available for download through the STAB Profiles web application (http://tropicalpharmacology.com/tools/stab-profiles/). With these data and our tool, we were able to gain key insights into toxin-antivenom interactions and were able to differentiate the ability of different antivenoms to interact with certain toxins of interest. The data, as well as the web application, we present in this article should be of significant value to the venom-antivenom research community. Knowledge gained from our current and future analyses of this dataset carry the potential to guide the improvement and optimization of current antivenoms for maximum patient benefit, as well as aid the development of next-generation antivenoms.


Assuntos
Antivenenos/farmacologia , Reações Cruzadas , Gerenciamento de Dados , Peptídeos , Análise Serial de Proteínas/métodos , África , Animais , Sítios de Ligação , Epitopos/química , Humanos , Mordeduras de Serpentes/terapia , Venenos de Serpentes/química , Serpentes/classificação , Serpentes/metabolismo
7.
PLoS Negl Trop Dis ; 14(4): e0007802, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32236099

RESUMO

Snakebite is a neglected tropical disease that results in a variety of systemic and local pathologies in envenomed victims and is responsible for around 138,000 deaths every year. Many snake venoms cause severe coagulopathy that makes victims vulnerable to suffering life-threating haemorrhage. The mechanisms of action of coagulopathic snake venom toxins are diverse and can result in both anticoagulant and procoagulant effects. However, because snake venoms consist of a mixture of numerous protein and peptide components, high throughput characterizations of specific target bioactives is challenging. In this study, we applied a combination of analytical and pharmacological methods to identify snake venom toxins from a wide diversity of snake species that perturb coagulation. To do so, we used a high-throughput screening approach consisting of a miniaturised plasma coagulation assay in combination with a venom nanofractionation approach. Twenty snake venoms were first separated using reversed-phase liquid chromatography, and a post-column split allowed a small fraction to be analyzed with mass spectrometry, while the larger fraction was collected and dispensed onto 384-well plates. After fraction collection, any solvent present in the wells was removed by means of freeze-drying, after which it was possible to perform a plasma coagulation assay in order to detect coagulopathic activity. Our results demonstrate that many snake venoms simultaneously contain both procoagulant and anticoagulant bioactives that contribute to coagulopathy. In-depth identification analysis from seven medically-important venoms, via mass spectrometry and nanoLC-MS/MS, revealed that phospholipase A2 toxins are frequently identified in anticoagulant venom fractions, while serine protease and metalloproteinase toxins are often associated with procoagulant bioactivities. The nanofractionation and proteomics approach applied herein seems likely to be a valuable tool for the rational development of next-generation snakebite treatments by facilitating the rapid identification and fractionation of coagulopathic toxins, thereby enabling specific targeting of these toxins by new therapeutics such as monoclonal antibodies and small molecule inhibitors.


Assuntos
Anticoagulantes/análise , Fatores Biológicos/análise , Coagulantes/análise , Peptídeos/análise , Proteínas/análise , Venenos de Serpentes/química , Animais , Coagulação Sanguínea/efeitos dos fármacos , Fracionamento Químico , Cromatografia Líquida , Humanos , Plasma/efeitos dos fármacos , Proteômica , Espectrometria de Massas em Tandem
8.
Toxicon ; 178: 61-68, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32112787

RESUMO

Snakebites cause upwards of 1.8 million envenomings, 138,000 deaths and 500,000 cases of long term morbidity each year. Viper snake venoms (family Viperidae) generally contain a high proportion of proteases which can cause devastating effects such as hemorrhage, coagulopathy, edema, necrosis, and severe pain, in envenomed victims. In this study, analytical techniques were combined with enzymatic assays to develop a novel method for the detection of snake venom protease activity by using rhodamine-110-peptide substrate. In the so called at-line nanofractionation set up, crude venoms were first separated with reversed phase liquid chromatography, after which fractions were collected onto 384-well plates. Protease activity assays were then performed in the 384-well plates and bioassay chromatograms were constructed revealing protease activity. Parallel obtained UV absorbance, MS and proteomics data from a previous study facilitated toxin identification. The application of the rhodamine-110-peptide substrate assay showed significantly greater sensitivity compared to prior assays using casein-FITC as the substrate. Moreover, cross referencing UV and MS data and resulted in the detection of a number of tentative proteases suspected to exhibit protease activity, including snake venom serine proteases from Calloselasma rhodostoma and Daboia russelli venom and a snake venom metalloproteinase from the venom of Echis ocellatus. Our data demonstrate that his methodology can be a useful tool for selectively identifying snake venom proteases, and can be applied to provide a better understanding of protease-induced pathologies and the development of novel therapeutics for treating snakebite.


Assuntos
Venenos de Víboras/química , Animais , Fracionamento Químico , Cromatografia de Fase Reversa , Ensaios de Triagem em Larga Escala , Metaloproteases , Peptídeos , Rodaminas , Serina Proteases/química , Mordeduras de Serpentes , Viperidae
9.
J Proteomics ; 218: 103707, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32087377

RESUMO

The asp viper Vipera aspis aspis is a venomous snake found in France, and despite its medical importance, the complete toxin repertoire produced is unknown. Here, we used a venomics approach to decipher the composition of its venom. Transcriptomic analysis revealed 80 venom-annotated sequences grouped into 16 gene families. Among the most represented toxins were snake venom metalloproteases (23%), phospholipases A2 (15%), serine proteases (13%), snake venom metalloprotease inhibitors (13%) and C-type lectins (12%). LC-MS of venoms revealed similar profiles regardless of the method of extraction (milking vs defensive bite). Proteomic analysis validated 57 venom-annotated transcriptomic sequences (>70%), including one for each of the 16 families, but also identified 7 sequences not initially annotated as venom proteins, including a serine protease, a disintegrin, a glutaminyl-peptide cyclotransferase, a proactivator polypeptide-like and 3 aminopeptidases. Interestingly, phospholipases A2 were the dominant proteins in the venom, among which included an ammodytoxin B-like sequence, which may explain the reported neurotoxicity following some asp viper envenomations. In total, 87 sequences were retrieved from the Vipera aspis aspis transcriptome and proteome, constituting a valuable resource that will help in understanding the toxinological basis of clinical signs of envenoming and for the mining of useful pharmacological compounds. BIOLOGICAL SIGNIFICANCE: The asp viper (Vipera aspis aspis) causes several hundred envenomations annually in France, including unusual cases with neurological signs, resulting in one death per year on average. Here, we performed a proteotranscriptomic analysis of V. a. aspis venom in order to provide a better understanding of its venom composition. We found that, as in other Vipera species, phospholipase A2 dominates in the venom, and the presence of a sequence related to ammodytoxin B may explain the reported neurotoxicity following some asp viper envenomations. Thus, this study will help in informing the toxinological basis of clinical signs of envenoming.


Assuntos
Proteômica , Viperidae , Animais , França , Humanos , Metaloproteases/genética , Fosfolipases A2 , Venenos de Víboras
10.
Toxins (Basel) ; 12(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963329

RESUMO

Venomous snakebite is one of the world's most lethal neglected tropical diseases. Animal-derived antivenoms are the only standardized specific therapies currently available for treating snakebite envenoming, but due to venom variation, often this treatment is not effective in counteracting all clinical symptoms caused by the multitude of injected toxins. In this study, the coagulopathic toxicities of venoms from the medically relevant snake species Bothropsasper, Calloselasmarhodostoma, Deinagkistrodonacutus, Daboiarusselii, Echiscarinatus and Echisocellatus were assessed. The venoms were separated by liquid chromatography (LC) followed by nanofractionation and parallel mass spectrometry (MS). A recently developed high-throughput coagulation assay was employed to assess both the pro- and anticoagulant activity of separated venom toxins. The neutralization capacity of antivenoms on separated venom components was assessed and the coagulopathic venom peptides and enzymes that were either neutralized or remained active in the presence of antivenom were identified by correlating bioassay results with the MS data and with off-line generated proteomics data. The results showed that most snake venoms analyzed contained both procoagulants and anticoagulants. Most anticoagulants were identified as phospholipases A2s (PLA2s) and most procoagulants correlated with snake venom metalloproteinases (SVMPs) and serine proteases (SVSPs). This information can be used to better understand antivenom neutralization and can aid in the development of next-generation antivenom treatments.


Assuntos
Antivenenos , Proteômica , Venenos de Víboras , Animais , Coagulação Sanguínea , Bothrops , Cromatografia Líquida , Ensaios de Triagem em Larga Escala , Espectrometria de Massas , Metaloproteases , Peptídeos , Fosfolipases A2 , Daboia , Serina Proteases , Mordeduras de Serpentes , Viperidae
11.
J Proteomics ; 199: 31-50, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30763806

RESUMO

We report on the variable venom composition of a population of the Caucasus viper (Vipera kaznakovi) in Northeastern Turkey. We applied a combination of venom gland transcriptomics, de-complexing bottom-up and top-down venomics. In contrast to sole bottom-up venomics approaches and gel or chromatography based venom comparison, our combined approach enables a faster and more detailed comparison of venom proteomes from multiple individuals. In total, we identified peptides and proteins from 15 toxin families, including snake venom metalloproteinases (svMP; 37.8%), phospholipases A2 (PLA2; 19.0%), snake venom serine proteinases (svSP; 11.5%), C-type lectins (CTL; 6.9%) and cysteine-rich secretory proteins (CRISP; 5.0%), in addition to several low abundant toxin families. Furthermore, we identified intraspecies variations of the venom composition of V. kaznakovi, and find these were mainly driven by the age of the animals, with lower svSP abundance detected in juveniles. On the proteoform level, several small molecular weight toxins between 5 and 8 kDa in size, as well as PLA2s, drove the differences observed between juvenile and adult individuals. This study provides novel insights into the venom variability of V. kaznakovi and highlights the utility of intact mass profiling for fast and detailed comparison of snake venom. BIOLOGICAL SIGNIFICANCE: Population level and ontogenetic venom variation (e.g. diet, habitat, sex or age) can result in a loss of antivenom efficacy against snakebites from wide ranging snake populations. The current state of the art for the analysis of snake venoms are de-complexing bottom-up proteomics approaches. While useful, these have the significant drawback of being time-consuming and following costly protocols, and consequently are often applied to pooled venom samples. To overcome these shortcomings and to enable rapid and detailed profiling of large numbers of individual venom samples, we integrated an intact protein analysis workflow into a transcriptomics-guided bottom-up approach. The application of this workflow to snake individuals of a local population of V. kaznakovi revealed intraspecies variations in venom composition, which are primarily explained by the age of the animals, and highlighted svSP abundance to be one of the molecular drivers for the compositional differences observed.


Assuntos
Espectrometria de Massas/métodos , Venenos de Víboras/química , Fatores Etários , Animais , Antivenenos/química , Biodiversidade , Metaloproteases/análise , Fosfolipases A2/análise , Proteômica/métodos , Especificidade da Espécie , Transcriptoma , Turquia , Venenos de Víboras/enzimologia , Viperidae
12.
Toxicon ; 152: 1-8, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29990530

RESUMO

Acetylcholinesterase (AChE) from Electrophorus electricus (eel) was immobilized on the surface of amino-modified paramagnetic beads to serve as a model for the development, validation and application of a new affinity-based ligand-fishing assay for the discovery of bioactive peptides from complex protein mixtures such as venoms. Nano liquid chromatography-mass spectrometry (nanoLC-MS) was used for the analysis of trapped peptides. Using enzyme-functionalized beads, the ligand-fishing assay was evaluated and optimized using a peptide reference mixture composed of one acetylcholinesterase binder (fasciculin-II) and five non-binders (mambalgin-1, angiotensin-II, bradykinin, cardiotoxin and α-bungarotoxin). As proof of concept, snake venom samples spiked with fasciculin-II demonstrated assay selectivity and sensitivity, fishing the peptide binder from complex venom solutions at concentrations as low as 1.0 µg/mL. As negative controls for method validation, venoms of four different snake species, not known to harbor AChE binding peptides, were screened and no AChE binders were detected. The applicability of the ligand fishing assay was subsequently demonstrated with venom from the black mamba, Jameson's mamba and western green mamba (Dendroaspis spp.), which have previously been reported to contain the AChE binding fasciculins. Unknown peptides (i.e. not fasciculins) with affinity to AChE were recovered from all mamba venoms tested. Tryptic digestion followed by nano-LC-MS analysis of the material recovered from black mamba venom identified the peptide with highest AChE-binding affinity as dendrotoxin-I, a pre-synaptic neurotoxin previously not known to interact with AChE. Co-incubation of AChE with various dendrotoxins in vitro revealed reduced inactivation of AChE activity over time, thus demonstrating that these toxins stabilize AChE.


Assuntos
Venenos Elapídicos/química , Peptídeos/química , Venenos de Serpentes/química , Acetilcolinesterase/química , Animais , Cromatografia Líquida/métodos , Venenos Elapídicos/análise , Electrophorus , Ligantes , Espectrometria de Massas/métodos
13.
Toxicon ; 148: 213-222, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29730150

RESUMO

Venoms from snakes are rich sources of highly active proteins with potent affinity towards a variety of enzymes and receptors. Of the many distinct toxicities caused by envenomation, neurotoxicity plays an important role in the paralysis of prey by snakes as well as by venomous sea snails and insects. In order to improve the analytical discovery component of venom toxicity profiling, this paper describes the implementation of microfluidic high-resolution screening (HRS) to obtain neurotoxicity fingerprints from venoms that facilitates identification of the neurotoxic components of envenomation. To demonstrate this workflow, 47 snake venoms were profiled using the acetylcholine binding protein (AChBP) to mimic the target of neurotoxic proteins, in particular nicotinic acetylcholine receptors (nAChRs). In the microfluidic HRS system, nanoliquid chromatographic (nanoLC) separations were on-line connected to both AChBP profiling and parallel mass spectrometry (MS). For virtually all neurotoxic elapid snake venoms tested, we obtained bioactivity fingerprints showing major and minor bioactive zones containing masses consistent with three-finger toxins (3FTxs), whereas, viperid and colubrid venoms showed little or no detectable bioactivity. Our findings demonstrate that venom interactions with AChBP correlate with the severity of neurotoxicity observed following human envenoming by different snake species. We further, as proof of principle, characterized bioactive venom peptides from a viperid (Daboia russelli) and an elapid (Aspidelaps scutatus scutatus) snake by nanoLC-MS/MS, revealing that different toxin classes interact with the AChBP, and that this binding correlates with the inhibition of α7-nAChR in calcium-flux cell-based assays. The on-line post-column binding assay and subsequent toxin characterization methodologies described here provide a new in vitro analytic platform for rapidly investigating neurotoxic snake venom proteins.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Neurotoxinas/toxicidade , Peptídeos/isolamento & purificação , Venenos de Serpentes/toxicidade , Proteínas de Transporte , Cromatografia Líquida , Humanos , Antagonistas Nicotínicos , Peptídeos/química , Venenos de Serpentes/química , Espectrometria de Massas em Tandem
14.
Biochim Biophys Acta Gen Subj ; 1861(4): 814-823, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28130154

RESUMO

BACKGROUND: Non-front-fanged colubroid snakes comprise about two-thirds of extant ophidian species. The medical significance of the majority of these snakes is unknown, but at least five species have caused life-threatening or fatal human envenomings. However, the venoms of only a small number of species have been explored. METHODS: A combined venomic and venom gland transcriptomic approach was employed to characterise of venom of Dispholidus typus (boomslang), the snake that caused the tragic death of Professor Karl Patterson Schmidt. The ability of CroFab™ antivenom to immunocapture boomslang venom proteins was investigated using antivenomics. RESULTS: Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families: three-finger toxin (3FTx); phospholipase A2 (PLA2); cysteine-rich secretory proteins (CRISP); snake venom (SV) serine proteinase (SP); C-type lectin-like (CTL); SV metalloproteinases (SVMPs); and disintegrin-like/cysteine-rich (DC) proteolytic fragments. CroFab™ antivenom efficiently immunodepleted some boomslang SVMPs. CONCLUSIONS: The present work is the first to address the overall proteomic profile of D. typus venom. This study allowed us to correlate the toxin composition with the toxic activities of the venom. The antivenomic analysis suggested that the antivenom available at the time of the unfortunate accident could have exhibited at least some immunoreactivity against the boomslang SVMPs responsible for the disseminated intravascular coagulation syndrome that caused K.P. Schmidt's fatal outcome. GENERAL SIGNIFICANCE: This study may stimulate further research on other non-front-fanged colubroid snake venoms capable of causing life-threatening envenomings to humans, which in turn should contribute to prevent fatal human accidents, such as that unfortunately suffered by K.P. Schmidt.


Assuntos
Antivenenos/imunologia , Glândulas Salivares/metabolismo , Venenos de Serpentes/genética , Serpentes/genética , Transcriptoma/genética , Animais , Humanos , Lectinas Tipo C/genética , Metaloproteases/genética , Fosfolipases A2/genética , Proteoma/genética , Proteômica/métodos , Venenos de Serpentes/imunologia , Serpentes/imunologia , Árvores
15.
Proc Natl Acad Sci U S A ; 112(38): 11911-6, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26372961

RESUMO

The question about whether evolution is unpredictable and stochastic or intermittently constrained along predictable pathways is the subject of a fundamental debate in biology, in which understanding convergent evolution plays a central role. At the molecular level, documented examples of convergence are rare and limited to occurring within specific taxonomic groups. Here we provide evidence of constrained convergent molecular evolution across the metazoan tree of life. We show that resistance to toxic cardiac glycosides produced by plants and bufonid toads is mediated by similar molecular changes to the sodium-potassium-pump (Na(+)/K(+)-ATPase) in insects, amphibians, reptiles, and mammals. In toad-feeding reptiles, resistance is conferred by two point mutations that have evolved convergently on four occasions, whereas evidence of a molecular reversal back to the susceptible state in varanid lizards migrating to toad-free areas suggests that toxin resistance is maladaptive in the absence of selection. Importantly, resistance in all taxa is mediated by replacements of 2 of the 12 amino acids comprising the Na(+)/K(+)-ATPase H1-H2 extracellular domain that constitutes a core part of the cardiac glycoside binding site. We provide mechanistic insight into the basis of resistance by showing that these alterations perturb the interaction between the cardiac glycoside bufalin and the Na(+)/K(+)-ATPase. Thus, similar selection pressures have resulted in convergent evolution of the same molecular solution across the breadth of the animal kingdom, demonstrating how a scarcity of possible solutions to a selective challenge can lead to highly predictable evolutionary responses.


Assuntos
Glicosídeos Cardíacos/toxicidade , Evolução Molecular , Bufanolídeos/química , Bufanolídeos/toxicidade , Ponto Isoelétrico , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo
16.
Biochim Biophys Acta ; 1850(6): 1169-79, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25665484

RESUMO

BACKGROUND: Cysteine-rich secretory protein (CRISP) is present in majority of vertebrate including human. The physiological role of this protein is not characterized. We report that a CRISP isolated from Echis carinatus sochureki venom (ES-CRISP) inhibits angiogenesis. METHODS: The anti-angiogenic activity of purified ES-CRISP from snake venom was investigated in vitro using endothelial cells assays such as proliferation, migration and tube formation in Matrigel, as well as in vivo in quail embryonic CAM system. The modulatory effect of ES-CRISP on the expression of major angiogenesis factors and activation of angiogenesis pathways was tested by qRT-PCR and Western blot. RESULTS: The amino acid sequence of ES-CRISP was found highly similar to other members of this snake venom protein family, and shares over 50% identity with human CRISP-3. ES-CRISP supported adhesion to endothelial cells, although it was also internalized into the cytoplasm in a granule-like manner. It blocked EC proliferation, migration and tube formation in Matrigel. In the embryonic quail CAM system, ES-CRISP abolished neovascularization process induced by exogenous growth factors (bFGF, vpVEGF) and by developing gliomas. CRISP modulates the expression of several factors at the mRNA level, which were characterized as regulators of angiogenesis and blocked activation of MAPK Erk1/2 induced by VEGF. CONCLUSIONS: ES-CRISP was characterized as a negative regulator of the angiogenesis, by direct interaction with endothelial cells. GENERAL SIGNIFICANCE: The presented work may lead to the development of novel angiostatic therapy, as well as contribute to the identification of the physiological relevance of this functionally uncharacterized protein.


Assuntos
Inibidores da Angiogênese/farmacologia , Membrana Corioalantoide/irrigação sanguínea , Células Endoteliais/efeitos dos fármacos , Glioma/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Patológica , Neovascularização Fisiológica/efeitos dos fármacos , Venenos de Víboras/farmacologia , Sequência de Aminoácidos , Inibidores da Angiogênese/química , Inibidores da Angiogênese/isolamento & purificação , Inibidores da Angiogênese/metabolismo , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Glioma/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Dados de Sequência Molecular , Conformação Proteica , Codorniz , Transdução de Sinais/efeitos dos fármacos , Venenos de Víboras/química , Venenos de Víboras/isolamento & purificação , Venenos de Víboras/metabolismo
17.
J Proteomics ; 109: 188-98, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24946716

RESUMO

Fish venoms remain almost completely unstudied despite the large number of species. In part this is due to the inherent nature of fish venoms, in that they are highly sensitive to heat, pH, lyophilisation, storage and repeated freeze-thawing. They are also heavily contaminated with mucus, which makes proteomic study difficult. Here we describe a novel protein-handling protocol to remove mucus contamination, utilising ammonium sulphate and acetone precipitation. We validated this approach using barb venom gland tissue protein extract from the blue-spotted stingray Neotrygon kuhlii. We analysed the protein extract using 1D and 2D gels with LC-MS/MS sequencing. Protein annotation was underpinned by a venom gland transcriptome. The composition of our N. kuhlii venom sample revealed a variety of protein types that are completely novel to animal venom systems. Notably, none of the detected proteins exhibited similarity to the few toxin components previously characterised from fish venoms, including those found in other stingrays. Putative venom toxins identified here included cystatin, peroxiredoxin and galectin. Our study represents the first combined survey of gene and protein composition from the venom apparatus of any fish and our novel protein handling method will aid the future characterisation of toxins from other unstudied venomous fish lineages. BIOLOGICAL SIGNIFICANCE: These results show an efficient manner for removing mucus from fish venoms. These results are the first insights into the evolution of proteins present on stingrayvenom barbs.


Assuntos
Proteínas de Peixes/biossíntese , Venenos de Peixe/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteômica , Rajidae/metabolismo , Animais
18.
J Immunol Methods ; 402(1-2): 15-22, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24246428

RESUMO

Antivenoms are typically produced in horses or sheep and often purified using salt precipitation of immunoglobulins or F(ab')2 fragments. Caprylic (octanoic) acid fractionation of antiserum has the advantage of not precipitating the desired antibodies, thereby avoiding potential degradation that can lead to the formation of aggregates, which may be the cause of some adverse reactions to antivenoms. Here we report that when optimising the purification of immunoglobulins from ovine antiserum raised against snake venom, caprylic acid was found to have no effect on the activity of the enzymes pepsin and papain, which are employed in antivenom manufacturing to digest immunoglobulins to obtain F(ab')2 and Fab fragments, respectively. A "single-reagent" method was developed for the production of F(ab')2 antivenom whereby whole ovine antiserum was mixed with both caprylic acid and pepsin and incubated for 4h at 37°C. For ovine Fab antivenom production from whole antiserum, the "single reagent" comprised of caprylic acid, papain and l-cysteine; after incubation at 37°C for 18-20h, iodoacetamide was added to stop the reaction. Caprylic acid facilitated the precipitation of albumin, resulting in a reduced protein load presented to the digestion enzymes, culminating in substantial reductions in processing time. The ovine IgG, F(ab')2 and Fab products obtained using these novel caprylic acid methods were comparable in terms of yield, purity and specific activity to those obtained by multi-step conventional salt fractionation with sodium sulphate.


Assuntos
Antivenenos/isolamento & purificação , Caprilatos/química , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Imunoglobulina G/isolamento & purificação , Imunoprecipitação/métodos , Venenos de Serpentes/imunologia , Animais , Antivenenos/sangue , Antivenenos/imunologia , Cromatografia em Gel , Cisteína/química , Fragmentos Fab das Imunoglobulinas/sangue , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Papaína/química , Pepsina A/química , Albumina Sérica/química , Ovinos , Temperatura , Fatores de Tempo
19.
PLoS One ; 8(11): e81827, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312363

RESUMO

Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted ß-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.


Assuntos
Evolução Molecular , Fator de Crescimento Neural/genética , Fatores de Crescimento Neural/genética , Venenos de Serpentes/genética , Animais , Teorema de Bayes , Elapidae , Funções Verossimilhança , Filogenia
20.
Toxicon ; 71: 96-104, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23747272

RESUMO

Fractionation by reversed-phase HPLC of venom from four species of saw-scaled viper: Echis ocellatus, Echis pyramidum leakeyi, Echis carinatus sochureki, and Echis coloratus led to identification in each sample of an abundant protein with cytotoxic activity against human non-small cell lung adenocarcinoma A549 cells. The active component in each case was identified by MALDI-TOF mass fingerprinting of tryptic digests as [Ser49]phospholipase A2 ([Ser49]PLA2). An isoform of [Ser49]PLA2 containing the single Ala¹8→ Val substitution and a partially characterized [Asp49]PLA2 were also present in the E. coloratus venom. LC50 values against A549 cells for the purified [Ser49]PLA2 proteins from the four species are in the range 2.9-8.5 µM. This range is not significantly different from the range of LC50 values against human umbilical vein endothelial HUVEC cells (2.5-12.2 µM) indicating that the [Ser49]PLA2 proteins show no differential anti-tumor activity. The LC50 value for [Ser49]PLA2 from E. ocellatus against human erythrocytes is >100 µM and the MIC values against Escherichia coli and Staphylococcus aureus are >100 µM. It is suggested that the [Ser49]PLA2 proteins play a major role in producing local tissue necrosis and hemorrhage at the site of envenomation.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Fosfolipases A2/farmacologia , Venenos de Víboras/farmacologia , Viperidae , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Concentração Inibidora 50 , Dados de Sequência Molecular , Fosfolipases A2/isolamento & purificação , Mordeduras de Serpentes/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Viperidae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA