Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nat Commun ; 10(1): 4153, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515478

RESUMO

Respiratory syncytial virus (RSV) infection is the leading cause of hospitalization and infant mortality under six months of age worldwide; therefore, the prevention of RSV infection in all infants represents a significant unmet medical need. Here we report the isolation of a potent and broadly neutralizing RSV monoclonal antibody derived from a human memory B-cell. This antibody, RB1, is equipotent on RSV A and B subtypes, potently neutralizes a diverse panel of clinical isolates in vitro and demonstrates in vivo protection. It binds to a highly conserved epitope in antigenic site IV of the RSV fusion glycoprotein. RB1 is the parental antibody to MK-1654 which is currently in clinical development for the prevention of RSV infection in infants.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Sequência Conservada , Glicoproteínas/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Linfócitos B/imunologia , Sítios de Ligação , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Humanos , Memória Imunológica , Modelos Moleculares , Ligação Proteica , Sigmodontinae
2.
Sci Rep ; 6: 34215, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703172

RESUMO

Dengue virus has emerged as an important arboviral infection worldwide. As a complex pathogen, with four distinct serotypes, the development of a successful Dengue virus vaccine has proven to be challenging. Here, we describe a novel Dengue vaccine candidate that contains truncated, recombinant, Dengue virus envelope protein from all four Dengue virus serotypes (DEN-80E) formulated with ionizable cationic lipid nanoparticles (LNPs). Immunization studies in mice, Guinea pigs, and in Rhesus macaques, revealed that LNPs induced high titers of Dengue virus neutralizing antibodies, with or without co-administration or encapsulation of a Toll-Like Receptor 9 agonist. Importantly, LNPs were also able to boost DEN-80E specific CD4+ and CD8+ T cell responses. Cytokine and chemokine profiling revealed that LNPs induced strong chemokine responses without significant induction of inflammatory cytokines. In addition to being highly efficacious, the vaccine formulation proved to be well-tolerated, demonstrating no elevation in any of the safety parameters evaluated. Notably, reduction in cationic lipid content of the nanoparticle dramatically reduced the LNP's ability to boost DEN-80E specific immune responses, highlighting the crucial role for the charge of the LNP. Overall, our novel studies, across multiple species, reveal a promising tetravalent Dengue virus sub-unit vaccine candidate.


Assuntos
Vacinas contra Dengue , Vírus da Dengue/imunologia , Dengue , Imunização Secundária , Lipídeos , Proteínas do Envelope Viral , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Dengue/imunologia , Dengue/prevenção & controle , Vacinas contra Dengue/química , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/farmacologia , Feminino , Cobaias , Humanos , Lipídeos/química , Lipídeos/imunologia , Lipídeos/farmacologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-27157808

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes severe arthralgia. The envelope of CHIKV is composed of 240 copies of two glycoproteins: E1 and E2. In this work, we have characterized the N-glycosylation patterns of CHIKV virus-like particles (VLPs), containing both E1 and E2 proteins, derived from mammalian and insect cells using hydrophilic interaction liquid chromatography (HILIC) with fluorescence (FL) and mass spectrometry (MS) detection. While HEK293 derived CHIKV VLPs contain oligomannose, hybrid and complex glycans, VLPs derived from SfBasic predominantly contain oligomannose glycans. This strong host dependence of N-glycosylation pattern resembles other alphaviruses such as SINV. The VLPs from HEK293 and SfBasic, with significantly different N-glycosylation profiles, are valuable reagents enabling future in-depth correlation studies between immunogenicity and glycosylation. In addition, the characterization tools presented here allow one to monitor glycosylation during vaccine process development and ensure process consistency.


Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/química , Polissacarídeos/análise , Proteínas do Envelope Viral/química , Animais , Linhagem Celular , Cromatografia Líquida/métodos , Glicosilação , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Insetos , Espectrometria de Massas/métodos , Modelos Moleculares
4.
MAbs ; 8(1): 129-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26491897

RESUMO

Monitoring antigen-specific memory B cells and the antibodies they encode is important for understanding the specificity, breadth and duration of immune response to an infection or vaccination. The antibodies isolated could further help design vaccine antigens for raising relevant protective immune responses. However, developing assays to measure and isolate antigen-specific memory B cells is technically challenging due to the low frequencies of these cells that exist in the circulating blood. Here, we describe a flow cytometry method to identify and isolate dengue envelope-specific memory B cells using a labeled dengue envelope protein. We enumerated dengue-envelope specific memory B cells from a cohort of dengue seropositive donors using this direct flow cytometry assay. A more established and conventional assay, the cultured B ELISPOT, was used as a benchmark comparator. Furthermore, we were able to confirm the single-sorted memory B-cell specificity by culturing B cells and differentiating them into plasma cells using cell lines expressing CD40L. The culture supernatants were assayed for antigen binding and the ability of the antibodies to neutralize the cognate dengue virus. Moreover, we successfully isolated the heavy and light Ig sequences and expressed them as full-length recombinant antibodies to reproduce the activity seen in culture supernatants. Mapping of these antibodies revealed a novel epitope for dengue 2 virus serotype. In conclusion, we established a reproducible methodology to enumerate antigen-specific memory B cells and assay their encoded antibodies for functional characterization.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vírus da Dengue/imunologia , Memória Imunológica , Proteínas do Envelope Viral/imunologia , Linfócitos B/citologia , Técnicas de Cultura de Células , Feminino , Citometria de Fluxo , Humanos , Masculino
5.
PLoS One ; 9(6): e101373, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24979708

RESUMO

We recently constructed a novel non-replicating dominant-negative HSV-2 recombinant viral vaccine (CJ2-gD2) capable of expressing various HSV-2 antigens that are dominant targets of HSV-2-specific CD8 T-cell response. Importantly, CJ2-gD2 expresses gD2, the HSV-2 major antigen glycoprotein D, as efficiently as wild-type HSV-2 infection and can lead to a nearly 500-fold reduction in wild-type HSV-2 viral replication in cells co-infected with CJ2-gD2 and wild-type HSV-2. In this report, we show that CJ2-gD2 elicits a strong antibody response to various HSV-2 antigens and is highly effective in the prevention of primary and recurrent HSV-2 genital infection and disease in the immunized guinea pigs. The direct comparison study between CJ2-gD2 and a gD2 subunit vaccine (gD2-alum/MPL) with a formulation akin to a vaccine tested in phase III clinical trials shows that CJ2-gD2 is 8 times more effective than the gD2-alum/MPL subunit vaccine in eliciting an anti-HSV-2 specific neutralizing antibody response and offers significantly superior protection against primary and recurrent HSV-2 genital infections. Importantly, no challenge wild-type HSV-2 viral DNA was detectable in dorsal root ganglia DNA isolated from CJ2-gD2-immunized guinea pigs on day 60 post-challenge. CJ2-gD2 should be an excellent HSV-2 vaccine candidate for protection against HSV-2 genital infection and disease in humans.


Assuntos
Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/imunologia , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Células CHO , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetinae , Cricetulus , Feminino , Cobaias , Herpes Genital/imunologia , Humanos , Vacinas de Subunidades Antigênicas/imunologia , Células Vero
6.
PLoS One ; 9(4): e94401, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24713807

RESUMO

Chikungunya virus-like particles (VLPs) have potential to be used as a prophylactic vaccine based on testing in multiple animal models and are currently being evaluated for human use in a Phase I clinical trial. The current method for producing these enveloped alphavirus VLPs by transient gene expression in mammalian cells presents challenges for scalable and robust industrial manufacturing, so the insect cell baculovirus expression vector system was evaluated as an alternative expression technology. Subsequent to recombinant baculovirus infection of Sf21 cells in standard culture media (pH 6.2-6.4), properly processed Chikungunya structural proteins were detected and assembled capsids were observed. However, an increase in culture pH to 6.6-6.8 was necessary to produce detectable concentrations of assembled VLPs. Since this elevated production pH exceeds the optimum for growth medium stability and Sf21 culture, medium modifications were made and a novel insect cell variant (SfBasic) was derived by exposure of Sf21 to elevated culture pH for a prolonged period of time. The high-pH adapted SfBasic insect cell line described herein is capable of maintaining normal cell growth into the typical mammalian cell culture pH range of 7.0-7.2 and produces 11-fold higher Chikungunya VLP yields relative to the parental Sf21 cell line. After scale-up into stirred tank bioreactors, SfBasic derived VLPs were chromatographically purified and shown to be similar in size and structure to a VLP standard derived from transient gene expression in HEK293 cells. Total serum anti-Chikungunya IgG and neutralizing titers from guinea pigs vaccinated with SfBasic derived VLPs or HEK293 derived VLPs were not significantly different with respect to production method, suggesting that this adapted insect cell line and production process could be useful for manufacturing Chikungunya VLPs for use as a vaccine. The adaptation of Sf21 to produce high levels of recombinant protein and VLPs in an elevated pH range may also have applications for other pH-sensitive protein or VLP targets.


Assuntos
Vírus Chikungunya/fisiologia , Replicação Viral , Animais , Capsídeo/ultraestrutura , Técnicas de Cultura de Células , Linhagem Celular , Expressão Gênica , Cobaias , Humanos , Concentração de Íons de Hidrogênio , Proteínas Recombinantes , Spodoptera , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Vírion/imunologia , Vírion/ultraestrutura
7.
J Virol ; 88(4): 2000-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24284325

RESUMO

A prophylactic vaccine for genital herpes disease remains an elusive goal. We report the results of two studies performed collaboratively in different laboratories that assessed immunogenicity and vaccine efficacy in herpes simplex virus 1 (HSV-1)-seropositive guinea pigs immunized and subsequently challenged intravaginally with HSV-2. In study 1, HSV-2 glycoproteins C (gC2) and D (gD2) were produced in baculovirus and administered intramuscularly as monovalent or bivalent vaccines with CpG and alum. In study 2, gD2 was produced in CHO cells and given intramuscularly with monophosphoryl lipid A (MPL) and alum, or gC2 and gD2 were produced in glycoengineered Pichia pastoris and administered intramuscularly as a bivalent vaccine with Iscomatrix and alum to HSV-1-naive or -seropositive guinea pigs. In both studies, immunization boosted neutralizing antibody responses to HSV-1 and HSV-2. In study 1, immunization with gC2, gD2, or both immunogens significantly reduced the frequency of genital lesions, with the bivalent vaccine showing the greatest protection. In study 2, both vaccines were highly protective against genital disease in naive and HSV-1-seropositive animals. Comparisons between gD2 and gC2/gD2 in study 2 must be interpreted cautiously, because different adjuvants, gD2 doses, and antigen production methods were used; however, significant differences invariably favored the bivalent vaccine. Immunization of naive animals with gC2/gD2 significantly reduced the number of days of vaginal shedding of HSV-2 DNA compared with that for mock-immunized animals. Surprisingly, in both studies, immunization of HSV-1-seropositive animals had little effect on recurrent vaginal shedding of HSV-2 DNA, despite significantly reducing genital disease.


Assuntos
Herpes Genital/prevenção & controle , Herpesvirus Humano 1/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/farmacologia , Análise de Variância , Animais , Anticorpos Neutralizantes/imunologia , Baculoviridae , Células CHO , Cricetinae , Cricetulus , Ensaio de Imunoadsorção Enzimática , Feminino , Cobaias , Injeções Intramusculares , Lipídeo A/análogos & derivados , Pichia , Reação em Cadeia da Polimerase em Tempo Real , Vacinas Virais/administração & dosagem
8.
Proc Natl Acad Sci U S A ; 110(51): E4997-5005, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297878

RESUMO

Human cytomegalovirus (HCMV) can cause serious morbidity/mortality in transplant patients, and congenital HCMV infection can lead to birth defects. Developing an effective HCMV vaccine is a high medical priority. One of the challenges to the efforts has been our limited understanding of the viral antigens important for protective antibodies. Receptor-mediated viral entry to endothelial/epithelial cells requires a glycoprotein H (gH) complex comprising five viral proteins (gH, gL, UL128, UL130, and UL131). This gH complex is notably missing from HCMV laboratory strains as well as HCMV vaccines previously evaluated in the clinic. To support a unique vaccine concept based on the pentameric gH complex, we established a panel of 45 monoclonal antibodies (mAbs) from a rabbit immunized with an experimental vaccine virus in which the expression of the pentameric gH complex was restored. Over one-half (25 of 45) of the mAbs have neutralizing activity. Interestingly, affinity for an antibody to bind virions was not correlated with its ability to neutralize the virus. Genetic analysis of the 45 mAbs based on their heavy- and light-chain sequences identified at least 26 B-cell linage groups characterized by distinct binding or neutralizing properties. Moreover, neutralizing antibodies possessed longer complementarity-determining region 3 for both heavy and light chains than those with no neutralizing activity. Importantly, potent neutralizing mAbs reacted to the pentameric gH complex but not to gB. Thus, the pentameric gH complex is the primary target for antiviral antibodies by vaccination.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Complexos Multiproteicos/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/genética , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Complexos Multiproteicos/genética , Coelhos , Proteínas do Envelope Viral/genética
9.
Vaccine ; 31(42): 4888-93, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23941913

RESUMO

There is a need for novel rabies vaccines suitable for short course, pre- and post-exposure prophylactic regimens which require reduced doses of antigen to address the current worldwide supply issue. We evaluated in rhesus macaques the immunogenicity of a quarter-dose of a standard rabies vaccine formulated with Merck's amorphous aluminum hydroxylphosphate sulfate adjuvant, the saponin-based ISCOMATRIX™ adjuvant, or a synthetic TLR9 agonist. All adjuvants significantly increased the magnitude and durability of the humoral immune response as measured by rapid fluorescent focus inhibition test (RFFIT). Several three-dose vaccine regimens resulted in adequate neutralizing antibody of ≥ 0.5 IU/ml earlier than the critical day seven post the first dose. Rabies vaccine with ISCOMATRIX™ adjuvant given at days 0 and 3 resulted in neutralizing antibody titers which developed faster and were up to one log10 higher compared to WHO-recommended intramuscular and intradermal regimens and furthermore, passive administration of human rabies immunoglobulin did not interfere with immunogenicity of this reduced dose, short course vaccine regimen. Adjuvantation of whole-killed rabies vaccine for intramuscular injection may therefore be a viable alternative to intradermal application of non-adjuvanted vaccine for both pre- and post-exposure regimens.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Compostos de Alumínio/administração & dosagem , Colesterol/administração & dosagem , Fosfolipídeos/administração & dosagem , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/imunologia , Saponinas/administração & dosagem , Receptor Toll-Like 9/agonistas , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Combinação de Medicamentos , Feminino , Injeções Intramusculares , Macaca mulatta , Masculino , Testes de Neutralização , Fosfatos/administração & dosagem , Raiva/prevenção & controle , Sulfatos/administração & dosagem , Receptor Toll-Like 9/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
10.
PLoS Pathog ; 9(6): e1003404, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818843

RESUMO

Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different vaccine candidates can be compared in early phases of evaluation.


Assuntos
Vacinas contra a AIDS/imunologia , Epitopos de Linfócito T/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/genética , Estudos de Coortes , Epitopos de Linfócito T/genética , Feminino , Infecções por HIV/genética , Infecções por HIV/prevenção & controle , HIV-1/genética , Humanos , Masculino
11.
Oncoimmunology ; 1(8): 1258-1270, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23243589

RESUMO

Functional T-cell epitope discovery is a key process for the development of novel immunotherapies, particularly for cancer immunology. In silico epitope prediction is a common strategy to try to achieve this objective. However, this approach suffers from a significant rate of false-negative results and epitope ranking lists that often are not validated by practical experience. A high-throughput platform for the identification and prioritization of potential T-cell epitopes is the iTopia(TM) Epitope Discovery System(TM), which allows measuring binding and stability of selected peptides to MHC Class I molecules. So far, the value of iTopia combined with in silico epitope prediction has not been investigated systematically. In this study, we have developed a novel in silico selection strategy based on three criteria: (1) predicted binding to one out of five common MHC Class I alleles; (2) uniqueness to the antigen of interest; and (3) increased likelihood of natural processing. We predicted in silico and characterized by iTopia 225 candidate T-cell epitopes and fixed-anchor analogs from three human tumor-associated antigens: CEA, HER2 and TERT. HLA-A2-restricted fragments were further screened for their ability to induce cell-mediated responses in HLA-A2 transgenic mice. The iTopia binding assay was only marginally informative while the stability assay proved to be a valuable experimental screening method complementary to in silico prediction. Thirteen novel T-cell epitopes and analogs were characterized and additional potential epitopes identified, providing the basis for novel anticancer immunotherapies. In conclusion, we show that combination of in silico prediction and an iTopia-based assay may be an accurate and efficient method for MHC Class I epitope discovery among tumor-associated antigens.

12.
Vaccine ; 30(52): 7469-74, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23107592

RESUMO

Maternal immunity to human cytomegalovirus (HCMV) prior to conception is ~70% protective against congenital transmission and in utero infection of HCMV. Both functional antibodies capable of neutralizing virus and effective T-cells are believed to be important for the protection. Previous HCMV vaccines have rarely been shown able to induce neutralizing antibody titers comparable to those seen in naturally infected HCMV seropositive subjects. Recent studies link a glycoprotein H (gH) complex to receptor-mediated viral entry of endothelial/epithelial cells and leukocytes. This pentameric gH complex, composed of five proteins (gH, gL, UL128, UL130 and UL131 proteins), is notably missing in all HCMV vaccine previously evaluated in clinic. Here we showed that a HCMV virus, with restored expression of the pentameric gH complex, can induce 10-fold higher neutralizing antibody titers than an attenuated AD169 virus or a recombinant glycoprotein B vaccine in multiple animal species in which viral replication is not expected. Encouragingly, the peak neutralizing titers post vaccination in rabbits and monkeys were within 2-4-fold of the levels determined in HCMV seropositive subjects. Functional antibodies by vaccination could further be improved when formulated with a novel adjuvant, and the titers of the antiviral antibodies were sustained in rabbits for over a year after vaccination. These results indicate that the pentameric gH complex is associated with greatly improved functional antibodies following vaccination, and support a vaccine concept based on a nonreplicating whole HCMV with the pentameric gH-associated epithelial tropism restored.


Assuntos
Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Células Epiteliais/virologia , Tropismo Viral , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Citomegalovirus/administração & dosagem , Feminino , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Vaccine ; 30(30): 4465-75, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22569124

RESUMO

It has been suggested that poor immunogenicity may explain the lack of vaccine efficacy in preventing or controlling HIV infection in the Step trial. To investigate this issue we vaccinated eight Indian rhesus macaques with a trivalent replication-incompetent adenovirus serotype 5 vaccine expressing SIV Gag, Pol, and Nef using a regimen similar to that employed in the Step trial. We detected broad vaccine-induced CD8(+) (2-7 pool-specific responses) and CD4(+) (5-19 pool-specific responses) T-cell responses in IFN-γ ELISPOT assays at one week post-boost using fresh PBMC. However, using cryopreserved cells at one and four weeks post-boost we observed a reduction in both the number and magnitude of most vaccine-induced responses. This demonstrates that the time points and conditions chosen to perform immune assays may influence the observed breadth and frequency of vaccine-induced T-cell responses. To evaluate protective efficacy, we challenged the immunized macaques, along with naïve controls, with repeated, limiting doses of the heterologous swarm isolate SIVsmE660. Vaccination did not significantly affect acquisition or control of virus replication in vaccinees compared to naïve controls. Post-infection we observed an average of only two anamnestic CD8(+) T-cell responses per animal, which may not have been sufficiently broad to control heterologous virus replication. While the trivalent vaccine regimen induced relatively broad T-cell responses in rhesus macaques, it failed to protect against infection or control viral replication. Our results are consistent with those observed in the Step trial and indicate that SIV immunization and challenge studies in macaque models of HIV infection can be informative in assessing pre-clinical HIV vaccines.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/patogenicidade , Replicação Viral , Adenoviridae/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Produtos do Gene gag/imunologia , Produtos do Gene nef/imunologia , Produtos do Gene pol/imunologia , Imunidade Celular , Interferon gama/imunologia , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral
14.
J Virol ; 86(8): 4586-98, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22318147

RESUMO

A herpes simplex virus 2 (HSV-2) glycoprotein E deletion mutant (gE2-del virus) was evaluated as a replication-competent, attenuated live virus vaccine candidate. The gE2-del virus is defective in epithelial cell-to-axon spread and in anterograde transport from the neuron cell body to the axon terminus. In BALB/c and SCID mice, the gE2-del virus caused no death or disease after vaginal, intravascular, or intramuscular inoculation and was 5 orders of magnitude less virulent than wild-type virus when inoculated directly into the brain. No infectious gE2-del virus was recovered from dorsal root ganglia (DRG) after multiple routes of inoculation; however, gE2-del DNA was detected by PCR in lumbosacral DRG at a low copy number in some mice. Importantly, no recurrent vaginal shedding of gE2-del DNA was detected in immunized guinea pigs. Intramuscular immunization outperformed subcutaneous immunization in all parameters evaluated, although individual differences were not significant, and two intramuscular immunizations were more protective than one. Immunized animals had reduced vaginal disease, vaginal titers, DRG infection, recurrent genital lesions, and recurrent vaginal shedding of HSV-2 DNA; however, protection was incomplete. A combined modality immunization using live virus and HSV-2 glycoprotein C and D subunit antigens in guinea pigs did not totally eliminate recurrent lesions or recurrent vaginal shedding of HSV-2 DNA. The gE2-del virus used as an immunotherapeutic vaccine in previously HSV-2-infected guinea pigs greatly reduced the frequency of recurrent genital lesions. Therefore, the gE2-del virus is safe, other than when injected at high titer into the brain, and is efficacious as a prophylactic and immunotherapeutic vaccine.


Assuntos
Deleção de Genes , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/imunologia , Neurônios/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , DNA Viral , Feminino , Gânglios Espinais/virologia , Cobaias , Herpes Genital/mortalidade , Herpes Genital/prevenção & controle , Herpes Genital/terapia , Herpes Simples/mortalidade , Herpes Simples/prevenção & controle , Herpes Simples/terapia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/efeitos adversos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Medula Espinal/virologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia
15.
J Virol ; 86(4): 2239-50, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22156519

RESUMO

The Step Trial showed that the MRKAd5 HIV-1 subtype B Gag/Pol/Nef vaccine did not protect men from HIV infection or reduce setpoint plasma viral RNA (vRNA) levels but, unexpectedly, it did modestly enhance susceptibility to HIV infection in adenovirus type 5 (Ad5)-seropositive, uncircumcised men. As part of the process to understand the results of the Step Trial, we designed a study to determine whether rhesus macaques chronically infected with a host-range mutant Ad5 (Ad5hr) and then immunized with a replication defective Ad5 SIVmac239 Gag/Pol/Nef vaccine were more resistant or susceptible to SIV infection than unimmunized rhesus macaques challenged with a series of escalating dose penile exposures to SIVmac 251. The Ad5 SIV vaccine induced CD8(+) T cell responses in 70% of the monkeys, which is similar to the proportion of humans that responded to the vaccine in the Step Trial. However, the vaccine did not protect vaccinated animals from penile SIV challenge. At the lowest SIV exposure dose (10(3) 50% tissue culture infective doses), 2 of 9 Ad5-seropositive animals immunized with the Ad5 SIV vaccine became infected compared to 0 of 34 animals infected in the other animal groups (naive animals, Ad5-seropositive animals immunized with the empty Ad5 vector, Ad5-seronegative animals immunized with the Ad5 SIV vaccine, and Ad5-seronegative animals immunized with the empty Ad5 vector). Penile exposure to more concentrated virus inocula produced similar rates of infection in all animal groups. Although setpoint viral loads were unaffected in Step vaccinees, the Ad5 SIV-immunized animals had significantly lower acute-phase plasma vRNA levels compared to unimmunized animals. Thus, the results of the nonhuman primate (NHP) study described here recapitulate the lack of protection against HIV acquisition seen in the Step Trial and suggest a greater risk of infection in the Ad5-seropositive animals immunized with the Ad5 SIV vaccine. Further studies are necessary to confirm the enhancement of virus acquisition and to discern associated mechanisms.


Assuntos
Vacinas contra a AIDS/imunologia , Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Produtos do Gene nef/imunologia , Infecções por HIV/prevenção & controle , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Animais , Anticorpos Antivirais/imunologia , Vírus Defeituosos/genética , Vírus Defeituosos/fisiologia , Modelos Animais de Doenças , Produtos do Gene env/administração & dosagem , Produtos do Gene env/genética , Produtos do Gene gag/administração & dosagem , Produtos do Gene gag/genética , Produtos do Gene nef/administração & dosagem , Produtos do Gene nef/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , HIV/genética , HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Humanos , Imunização , Macaca mulatta , Masculino , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética
16.
J Clin Invest ; 122(1): 359-67, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22201684

RESUMO

Recombinant viruses hold promise as vectors for vaccines to prevent infectious diseases with significant global health impacts. One of their major limitations is that preexisting anti-vector neutralizing antibodies can reduce T cell responses to the insert antigens; however, the impact of vector-specific cellular immunity on subsequent insert-specific T cell responses has not been assessed in humans. Here, we have identified and compared adenovirus-specific and HIV-specific T cell responses in subjects participating in two HIV-1 vaccine trials using a vaccine vectored by adenovirus serotype 5 (Ad5). Higher frequencies of pre-immunization adenovirus-specific CD4⁺ T cells were associated with substantially decreased magnitude of HIV-specific CD4⁺ T cell responses and decreased breadth of HIV-specific CD8⁺ T cell responses in vaccine recipients, independent of type-specific preexisting Ad5-specific neutralizing antibody titers. Further, epitopes recognized by adenovirus-specific T cells were commonly conserved across many adenovirus serotypes, suggesting that cross-reactivity of preexisting adenovirus-specific T cells can extend to adenovirus vectors derived from rare serotypes. These findings provide what we believe to be a new understanding of how preexisting viral immunity may impact the efficacy of vaccines under current evaluation for prevention of HIV, tuberculosis, and malaria.


Assuntos
Vacinas contra a AIDS/imunologia , Adenovírus Humanos/imunologia , HIV-1/imunologia , Linfócitos T/imunologia , Vacinas contra a AIDS/genética , Adenovírus Humanos/classificação , Adenovírus Humanos/genética , Sequência de Aminoácidos , Antígenos Virais/genética , Vetores Genéticos , Antígenos HIV/genética , HIV-1/genética , Humanos , Imunidade Celular , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Sorotipagem , Linfócitos T/virologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
17.
Vaccine ; 29(50): 9385-90, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22001120

RESUMO

Effective and safe novel adjuvants are of great interest to the vaccine research community. In this study, we describe our evaluation of adjuvant formulations containing a TLR9 agonist adjuvant (ISS1018) or ISCOMATRIX™ adjuvant for a two-dose regimen of hepatitis B virus surface antigen virus-like particle vaccine in mice and rhesus macaques. Our results show a 10-20 fold improvement in Ab binding titers determined in an antigen-sandwich assay for adjuvant formulations with ISCOMATRIX™ adjuvant, in comparison to routine aluminum formulation. Furthermore, we optimized a competition assay to evaluate a functional component of immune sera, using a conformation-dependent and protective mAb, RFHBs1, as the probe. Although good correlation was observed between Ab binding titers from the antigen-sandwich assay and functional titers from the in-solution competition against RFHBs1, the latter assessment provided a much more stringent ranking of adjuvant formulations than the former. These results indicate the importance of evaluating functional Abs when assessing and comparing novel adjuvant formulations, as it provides another angle to investigate the effects of change in adjuvant composition on antigenic integrity of the testing vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos de Superfície da Hepatite B/imunologia , Vacinas contra Hepatite B/imunologia , Animais , Anticorpos Monoclonais/imunologia , Colesterol/farmacologia , Combinação de Medicamentos , Feminino , Anticorpos Anti-Hepatite B/sangue , Vírus da Hepatite B/imunologia , Técnicas Imunoenzimáticas , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/farmacologia , Fosfolipídeos/farmacologia , Saponinas/farmacologia , Vacinas Sintéticas/imunologia
18.
Vaccine ; 29(48): 9075-80, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21945962

RESUMO

Naturally acquired immunity significantly reduces the risk of congenital cytomegalovirus (CMV) infection in future pregnancies. An immune response comparable to that of natural infection has been used as a benchmark for CMV vaccine efficacy; however, the magnitude and persistence of the neutralizing antibody responses in naturally infected women are not completely understood. In this study, we quantitatively analyzed a panel of 375 female CMV convalescent sera ranging in age from 18 to 84 years, for its ability to block virus entry into epithelial cells and fibroblasts, as well as its binding potential to CMV particles. The geometric mean titer of the sera in this panel to neutralize 50% of the virus entry into epithelial cells was 7491, compared to 802 for entry into fibroblasts. The epithelial neutralizing titers were statistically indistinguishable among different age groups, and conformed to a normal distribution. There was a weak correlation between the levels of neutralization and the binding activities to viral particles. Our data confirmed that natural CMV infection in healthy women induces potent neutralizing antibodies against infection of both fibroblasts and epithelial cells. The serum neutralizing activities were maintained at high levels throughout the child bearing age. The corresponding titers may serve as a biomarker for CMV vaccine efficacy.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Infecções por Citomegalovirus/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular , Citomegalovirus/imunologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Feminino , Fibroblastos/imunologia , Fibroblastos/virologia , Humanos , Pessoa de Meia-Idade , Testes de Neutralização , Adulto Jovem
19.
J Virol ; 85(20): 10472-86, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21813597

RESUMO

Attempts to develop a vaccine to prevent genital herpes simplex virus 2 (HSV-2) disease have been only marginally successful, suggesting that novel strategies are needed. Immunization with HSV-2 glycoprotein C (gC-2) and gD-2 was evaluated in mice and guinea pigs to determine whether adding gC-2 to a gD-2 subunit vaccine would improve protection by producing antibodies that block gC-2 immune evasion from complement. Antibodies produced by gC-2 immunization blocked the interaction between gC-2 and complement C3b, and passive transfer of gC-2 antibody protected complement-intact mice but not C3 knockout mice against HSV-2 challenge, indicating that gC-2 antibody is effective, at least in part, because it prevents HSV-2 evasion from complement. Immunization with gC-2 also produced neutralizing antibodies that were active in the absence of complement; however, the neutralizing titers were higher when complement was present, with the highest titers in animals immunized with both antigens. Animals immunized with the gC-2-plus-gD-2 combination had robust CD4+ T-cell responses to each immunogen. Multiple disease parameters were evaluated in mice and guinea pigs immunized with gC-2 alone, gD-2 alone, or both antigens. In general, gD-2 outperformed gC-2; however, the gC-2-plus-gD-2 combination outperformed gD-2 alone, particularly in protecting dorsal root ganglia in mice and reducing recurrent vaginal shedding of HSV-2 DNA in guinea pigs. Therefore, the gC-2 subunit antigen enhances a gD-2 subunit vaccine by stimulating a CD4+ T-cell response, by producing neutralizing antibodies that are effective in the absence and presence of complement, and by blocking immune evasion domains that inhibit complement activation.


Assuntos
Gânglios Espinais/imunologia , Herpes Genital/prevenção & controle , Vacina contra Herpes Zoster/imunologia , Herpes Zoster/prevenção & controle , Herpesvirus Humano 2/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Feminino , Cobaias , Herpes Genital/imunologia , Herpes Zoster/imunologia , Vacina contra Herpes Zoster/administração & dosagem , Imunização/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prevenção Secundária , Vagina/virologia , Eliminação de Partículas Virais
20.
PLoS One ; 6(4): e18526, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21533229

RESUMO

The results of the recent Step Study highlight a need to clarify the effects of pre-existing natural immunity to a vaccine vector on vaccine-induced T-cell responses. To investigate this interaction, we examined the relationship between pre-existing Ad5 immunity and T-cell cytokine response profiles in healthy, HIV-uninfected recipients of MRKAd5 HIV-1 gag vaccine (HVTN 050, ClinicalTrials.gov #NCT00849732). Participants were grouped by baseline Ad5 neutralizing antibody titer as either Ad5-seronegative (titer ≤18; n = 36) or Ad5-seropositive (titer >200; n = 34). Samples from vaccine recipients were analyzed for immune responses to either HIV-1 Gag peptide pools or Ad5 empty vector using an ex vivo assay that measures thirty cytokines in the absence of long-term culture. The overall profiles of cytokine responses to Gag and Ad5 had similar combinations of induced Th1- and Th2-type cytokines, including IFN-γ, IL-2, TNF-α, IP-10, IL-13, and IL-10, although the Ad5-specific responses were uniformly higher than the Gag-specific responses (p<0.0001 for 9 out of 11 significantly expressed analytes). At the peak response time point, PBMC from Ad5-seronegative vaccinees secreted significantly more IP-10 in response to Gag (p = 0.008), and significantly more IP-10 (p = 0.0009), IL-2 (p = 0.006) and IL-10 (p = 0.05) in response to Ad5 empty vector than PBMC from Ad5-seropositive vaccinees. Additionally, similar responses to the Ad5 vector prior to vaccination were observed in almost all subjects, regardless of Ad5 neutralizing antibody status, and the levels of secreted IFN-γ, IL-10, IL-1Ra and GM-CSF were blunted following vaccination. The cytokine response profile of Gag-specific T cells mirrored the Ad5-specific response present in all subjects before vaccination, and included a number of Th1- and Th2-associated cytokines not routinely assessed in current vaccine trials, such as IP-10, IL-10, IL-13, and GM-CSF. Together, these results suggest that vector-specific humoral responses may reduce vaccine-induced T-cell responses by previously undetected mechanisms.


Assuntos
Vacinas contra a AIDS/imunologia , Adenoviridae/imunologia , Citocinas/biossíntese , Células Th1/imunologia , Células Th2/imunologia , Adenoviridae/genética , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Produtos do Gene gag/imunologia , Vetores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA