Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39024077

RESUMO

Transcranial-focused ultrasound (tFUS) procedures such as neuromodulation and blood-brain barrier (BBB) opening require precise focus placement within the brain. MRI is currently the most reliable tool for focus localization but can be prohibitive for procedures requiring recurrent therapies. We designed, fabricated, and characterized a patient-specific, 3-D-printed, stereotactic frame for repeated tFUS therapy. The frame is compact, with minimal footprint, can be removed and re-secured between treatments while maintaining sub-mm accuracy, and will allow for precise and repeatable transcranial FUS treatment without the need for MR-guidance following the initial calibration scan. Focus localization and repeatability were assessed via MR-thermometry and MR-acoustic radiation force imaging (ARFI) on an ex vivo skull phantom and in vivo nonhuman primates (NHPs), respectively. Focal localization, registration, steering, and re-steering were accomplished during the initial MRI calibration scan session. Keeping steering coordinates fixed in subsequent therapy and imaging sessions, we found good agreement between steered foci and the intended target, with target registration error (TRE) of 1.2 ± 0.3 ( n = 4 , ex vivo) and 1.0 ± 0.5 ( n = 3 , in vivo) mm. Focus position (steered and non-steered) was consistent, with sub-mm variation in each dimension between studies. Our 3-D-printed, patient-specific stereotactic frame can reliably position and orient the ultrasound transducer for repeated targeting of brain regions using a single MR-based calibration. The compact frame allows for high-precision tFUS to be carried out outside the magnet and could help reduce the cost of tFUS treatments where repeated application of an ultrasound focus is required with high precision.


Assuntos
Desenho de Equipamento , Imagens de Fantasmas , Animais , Humanos , Terapia por Ultrassom/métodos , Terapia por Ultrassom/instrumentação , Imageamento por Ressonância Magnética/métodos , Técnicas Estereotáxicas/instrumentação , Impressão Tridimensional , Encéfalo/diagnóstico por imagem , Macaca mulatta
2.
Biomaterials ; 303: 122397, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37979513

RESUMO

Critical limb ischemia (CLI) occurs when blood flow is restricted through the arteries, resulting in ulcers, necrosis, and chronic wounds in the downstream extremities. The development of collateral arterioles (i.e. arteriogenesis), either by remodeling of pre-existing vascular networks or de novo growth of new vessels, can prevent or reverse ischemic damage, but it remains challenging to stimulate collateral arteriole development in a therapeutic context. Here, we show that a gelatin-based hydrogel, devoid of growth factors or encapsulated cells, promotes arteriogenesis and attenuates tissue damage in a murine CLI model. The gelatin hydrogel is functionalized with a peptide derived from the extracellular epitope of Type 1 cadherins. Mechanistically, these "GelCad" hydrogels promote arteriogenesis by recruiting smooth muscle cells to vessel structures in both ex vivo and in vivo assays. In a murine femoral artery ligation model of CLI, delivery of in situ crosslinking GelCad hydrogels was sufficient to restore limb perfusion and maintain tissue health for 14 days, whereas mice treated with gelatin hydrogels had extensive necrosis and autoamputated within 7 days. A small cohort of mice receiving the GelCad hydrogels were aged out to 5 months and exhibited no decline in tissue quality, indicating durability of the collateral arteriole networks. Overall, given the simplicity and off-the-shelf format of the GelCad hydrogel platform, we suggest it could have utility for CLI treatment and potentially other indications that would benefit from arteriole development.


Assuntos
Circulação Colateral , Neovascularização Fisiológica , Humanos , Camundongos , Animais , Idoso , Neovascularização Fisiológica/fisiologia , Circulação Colateral/fisiologia , Hidrogéis/uso terapêutico , Gelatina/uso terapêutico , Isquemia Crônica Crítica de Membro , Modelos Animais de Doenças , Artéria Femoral/metabolismo , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Necrose , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Membro Posterior/metabolismo
3.
bioRxiv ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577718

RESUMO

While immunotherapy shows great promise in patients with triple negative breast cancer, many will not respond to treatment, and predicting response is made difficult by significant tumor heterogeneity. Non-invasive imaging of the tumor vasculature enables the monitoring of treatment and has potential to aid in predicting therapeutic response. Here, we use ultrafast power doppler ultrasound (US) to track longitudinal changes in the vascular response to radiotherapy in two breast cancer models to correlate vascular and immune changes in the tumor microenvironment. Tumor volume and vascular index were calculated to evaluate the effects of radiation using US imaging. US tumor measurements and the quantified vascular response to radiation were confirmed with caliper measurements and immunohistochemistry observations, respectively, demonstrating a proof-of-principle method for non-invasive vascular monitoring. Additionally, we found significant infiltration of CD8+ T cells into irradiated tumors 10 days after radiation, which followed a sustained decline in vascular index that was first observed 1 day post-radiation. Taken together, our findings reveal the potential for ultrafast power doppler US to evaluate changes in tumor vasculature that may be indicative of the tumor-immune microenvironment and ultimately improve patient outcomes by predicting response to immunotherapy.

4.
Magn Reson Med ; 88(6): 2419-2431, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916311

RESUMO

PURPOSE: To rapidly image and localize the focus in MR-guided focused ultrasound (FUS) while maintaining a low ultrasound duty cycle to minimize tissue effects. METHODS: MR-acoustic radiation force imaging (ARFI) is key to targeting FUS procedures such as neuromodulation, and works by encoding ultrasound-induced displacements into the phase of MR images. However, it can require long scan times to cover a volume of tissue, especially when minimizing the FUS dose during targeting is paramount. To simultaneously minimize scan time and the FUS duty cycle, a 2-min three-dimensional (3D) reduced-FOV spin echo ARFI scan with two-dimensional undersampling was implemented at 3T with a FUS duty cycle of 0.85%. The 3D k-space sampling scheme incorporated uniform undersampling in one phase-encoded axis and partial Fourier (PF) sampling in the other. The scan interleaved FUS-on and FUS-off data collection to improve displacement map quality via a joint low-rank image reconstruction. Experiments in agarose and graphite phantoms and living macaque brains for neuromodulation and blood-brain barrier opening studied the effects of the sampling and reconstruction strategy on the acquisition, and evaluated its repeatability and accuracy. RESULTS: In the phantom, the distances between displacement centroids of 10 prospective reconstructions and a fully sampled reference were below 1 mm. In in vivo brain, the distances between centroids ranged from 1.3 to 2.1 mm. Results in phantom and in vivo brain both showed that the proposed method can recover the FUS focus compared to slower fully sampled scans. CONCLUSION: The proposed 3D MR-ARFI reduced-FOV method enables rapid imaging of the FUS focus while maintaining a low FUS duty cycle.


Assuntos
Grafite , Acústica , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Estudos Prospectivos , Sefarose
5.
Sci Rep ; 9(1): 16235, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700021

RESUMO

The aim of this study was to improve the sensitivity of magnetic resonance-acoustic radiation force imaging (MR-ARFI) to minimize pressures required to localize focused ultrasound (FUS) beams, and to establish safe FUS localization parameters for ongoing ultrasound neuromodulation experiments in living non-human primates. We developed an optical tracking method to ensure that the MR-ARFI motion-encoding gradients (MEGs) were aligned with a single-element FUS transducer and that the imaged slice was prescribed at the optically tracked location of the acoustic focus. This method was validated in phantoms, which showed that MR-ARFI-derived displacement sensitivity is maximized when the MR-ARFI MEGs were maximally aligned with the FUS propagation direction. The method was then applied in vivo to acquire displacement images in two healthy macaque monkeys (M fascicularis) which showed the FUS beam within the brain. Temperature images were acquired using MR thermometry to provide an estimate of in vivo brain temperature changes during MR-ARFI, and pressure and thermal simulations of the acoustic pulses were performed using the k-Wave package which showed no significant heating at the focus of the FUS beam. The methods presented here will benefit the multitude of transcranial FUS applications as well as future human applications.


Assuntos
Acústica , Imageamento por Ressonância Magnética/efeitos adversos , Segurança , Crânio , Ondas Ultrassônicas/efeitos adversos , Animais , Encéfalo/diagnóstico por imagem , Macaca , Temperatura
6.
Sci Rep ; 8(1): 16347, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397280

RESUMO

Microbubble contrast agents are widely used in ultrasound imaging and therapy, typically with transmission center frequencies in the MHz range. Currently, an ultrasound center frequency near 250 kHz is proposed for clinical trials in which ultrasound combined with microbubble contrast agents is applied to open the blood brain barrier, since at this low frequency focusing through the human skull to a predetermined location can be performed with reduced distortion and attenuation compared to higher frequencies. However, the microbubble vibrational response has not yet been carefully evaluated at this low frequency (an order of magnitude below the resonance frequency of these contrast agents). In the past, it was assumed that encapsulated microbubble expansion is maximized near the resonance frequency and monotonically decreases with decreasing frequency. Our results indicated that microbubble expansion was enhanced for 250 kHz transmission as compared with the 1 MHz center frequency. Following 250 kHz insonation, microbubble expansion increased nonlinearly with increasing ultrasonic pressure, and was accurately predicted by either the modified Rayleigh-Plesset equation for a clean bubble or the Marmottant model of a lipid-shelled microbubble. The expansion ratio reached 30-fold with 250 kHz at a peak negative pressure of 400 kPa, as compared to a measured expansion ratio of 1.6 fold for 1 MHz transmission at a similar peak negative pressure. Further, the range of peak negative pressure yielding stable cavitation in vitro was narrow (~100 kPa) for the 250 kHz transmission frequency. Blood brain barrier opening using in vivo transcranial ultrasound in mice followed the same trend as the in vitro experiments, and the pressure range for safe and effective treatment was 75-150 kPa. For pressures above 150 kPa, inertial cavitation and hemorrhage occurred. Therefore, we conclude that (1) at this low frequency, and for the large oscillations, lipid-shelled microbubbles can be approximately modeled as clean gas microbubbles and (2) the development of safe and successful protocols for therapeutic delivery to the brain utilizing 250 kHz or a similar center frequency requires consideration of the narrow pressure window between stable and inertial cavitation.


Assuntos
Meios de Contraste , Microbolhas , Ondas Ultrassônicas , Animais , Barreira Hematoencefálica/metabolismo , Meios de Contraste/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Imagem Óptica , Pressão
7.
Ultrasound Med Biol ; 44(10): 2131-2142, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30057134

RESUMO

Plane-wave ultrasound contrast imaging offers a faster, less destructive means for imaging microbubbles compared with traditional ultrasound imaging. Even though many of the most acoustically responsive microbubbles have resonant frequencies in the lower-megahertz range, higher frequencies (>3 MHz) have typically been employed to achieve high spatial resolution. In this work we implement and optimize low-frequency (1.5-4 MHz) plane-wave pulse inversion imaging on a commercial, phased-array imaging transducer in vitro and illustrate its use in vivo by imaging a mouse xenograft model. We found that the 1.8-MHz contrast signal was about four times that acquired at 3.1 MHz on matched probes and nine times greater than echoes received on a higher-frequency probe. Low-frequency imaging was also much more resilient to motion. In vivo, we could identify sub-millimeter vasculature inside a xenograft tumor model and easily assess microbubble half-life. Our results indicate that low-frequency imaging can provide better signal-to-noise because it generates stronger non-linear responses. Combined with high-speed plane-wave imaging, this method could open the door to super-resolution imaging at depth, while high power pulses could be used for image-guided therapeutics.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Meios de Contraste , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Nus , Microbolhas , Imagens de Fantasmas
8.
Phys Med Biol ; 62(10): 4083-4106, 2017 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-28426437

RESUMO

Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such 'supersonic' excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.


Assuntos
Acústica , Técnicas de Imagem por Elasticidade/métodos , Elasticidade , Humanos , Imagens de Fantasmas , Vibração
9.
Mol Imaging Biol ; 19(3): 336-340, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28255842

RESUMO

Ultrasound is a rapidly advancing field with many emerging diagnostic and therapeutic applications. For diagnostics, new vascular targets are routinely identified and mature technologies are being translated to humans, while other recent innovations may bring about the creation of acoustic reporter genes and micron-scale resolution with ultrasound. As a cancer therapy, ultrasound is being explored as an adjuvant to immune therapies and to deliver acoustically or thermally active drugs to tumor regions. Ultrasound-enhanced delivery across the blood brain barrier (BBB) could potentially be very impactful for brain cancers and neurodegenerative diseases where the BBB often impedes the delivery of therapeutic molecules. In this minireview, we provide an overview of these topics in the field of ultrasound that are especially relevant to the interests of World Molecular Imaging Society.


Assuntos
Sistemas de Liberação de Medicamentos , Imagem Molecular , Ultrassonografia , Animais , Barreira Hematoencefálica/patologia , Humanos
10.
J Ther Ultrasound ; 4(1): 22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597889

RESUMO

BACKGROUND: MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. METHODS: A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. RESULTS: The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus visualization was achieved with acoustic radiation force imaging. CONCLUSIONS: We developed an MRgFUS platform for small-animal treatments that robustly delivers accurate, precise, and controllable sonications over extended time periods. This system is an open source and could increase the availability of low-cost small-animal systems to interdisciplinary researchers seeking to develop new MRgFUS applications and technology.

11.
Am J Nucl Med Mol Imaging ; 3(4): 336-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23901359

RESUMO

Ultrasound can selectively and specifically visualize upregulated vascular receptors through the detection of bound microbubbles. However, most current ultrasound molecular imaging methods incur delays that result in longer acquisition times and reduced frame rates. These delays occur for two main reasons: 1) multi-pulse imaging techniques are used to differentiate microbubbles from tissue and 2) acquisition occurs after free bubble clearance (>6 minutes) in order to differentiate bound from freely circulating microbubbles. In this paper, we validate tumor imaging with a broadband single pulse molecular imaging method that is faster than the multi-pulse methods typically implemented on commercial scanners. We also combine the single pulse method with interframe filtering to selectively image targeted microbubbles without waiting for unbound bubble clearance, thereby reducing acquisition time from 10 to 2 minutes. The single pulse imaging method leverages non-linear bubble behavior by transmitting at low and receiving at high frequencies (TLRH). We implemented TLRH imaging and visualized the accumulation of intravenously administrated integrin-targeted microbubbles in a phantom and a Met-1 mouse tumor model. We found that the TLRH contrast imaging has a ~2-fold resolution improvement over standard contrast pulse sequencing (CPS) imaging. By using interframe filtering, the tumor contrast was 24.8±1.6 dB higher after the injection of integrin-targeted microbubbles than non-targeted control MBs, while echoes from regions lacking the target integrin were suppressed by 26.2±2.1 dB as compared with tumor echoes. Since real-time three-dimensional (3D) molecular imaging provides a more comprehensive view of receptor distribution, we generated 3D images of tumors to estimate their volume, and these measurements correlated well with expected tumor sizes. We conclude that TLRH combined with interframe filtering is a feasible method for 3D targeted ultrasound imaging that is faster than current multi-pulse strategies.

12.
Am J Nucl Med Mol Imaging ; 3(1): 32-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342299

RESUMO

Conjugation of the (64)Cu PET radioisotope (t(1/2) = 12.7 hours) to long circulating liposomes enables long term liposome tracking. To evaluate the potential clinical utility of this radiotracer in diagnosis and therapeutic guidance, we compare image contrast, tumor volume, and biodistribution of (64)Cu-liposomes to metrics obtained with the dominant clinical tracer, (18)F-FDG. Twenty four female FVB mice with MET1 mammary carcinoma tumor grafts were examined. First, serial PET images were obtained with the (18)F-FDG radiotracer at 0.5 hours after injection and with the (64)Cu-liposome radiotracer at 6, 18, 24, and 48 hours after injection (n = 8). Next, paired imaging and histology were obtained at four time points: 0.5 hours after (18)F-FDG injection and 6, 24, and 48 hours after (64)Cu-liposome injection (n = 16). Tissue biodistribution was assessed with gamma counting following necropsy and tumors were paraffin embedded, sectioned, and stained with hematoxylin and eosin. The contrast ratio of images obtained using (18)F-FDG was 0.88 ± 0.01 (0.5 hours after injection), whereas with the (64)Cu-liposome radiotracer the contrast ratio was 0.78 ± 0.01, 0.89 ± 0.01, 0.88 ± 0.01, and 0.94 ± 0.01 at 6, 18, 24, and 48 hours, respectively. Estimates of tumor diameter were comparable between (64)Cu-liposomes and (18)F-FDG, (64)Cu-liposomes and necropsy, and (64)Cu-liposomes and ultrasound with Pearson's r-squared values of 0.79, 0.79, and 0.80, respectively. Heterogeneity of tumor tracer uptake was observed with both tracers, correlating with regions of necrosis on histology. The average tumor volume of 0.41 ± 0.05 cc measured with (64)Cu-liposomes was larger than that estimated with (18)F-FDG (0.28 ± 0.04 cc), with this difference apparently resulting primarily from accumulation of the radiolabeled particles in the pro-angiogenic tumor rim. The imaging of radiolabeled nanoparticles can facilitate tumor detection, identification of tumor margins, therapeutic evaluation and interventional guidance.

13.
Ann Biomed Eng ; 40(9): 2059-68, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22562306

RESUMO

Ultrasound contrast agents (UCAs) have tremendous potential for in vivo molecular imaging because of their high sensitivity. However, the diagnostic potential of UCAs has been difficult to exploit because current UCAs are based on pre-formed microbubbles, which can only detect cell surface receptors. Here, we demonstrate that chemical reactions that generate gas forming molecules can be used to perform molecular imaging by ultrasound in vivo. This new approach was demonstrated by imaging reactive oxygen species in vivo with allylhydrazine, a liquid compound that is converted into nitrogen and propylene gas after reacting with radical oxidants. We demonstrate that allylhydrazine encapsulated within liposomes can detect a 10 micromolar concentration of radical oxidants by ultrasound, and can image oxidative stress in mice, induced by lipopolysaccharide, using a clinical ultrasound system. We anticipate numerous applications of chemically-generated microbubbles for molecular imaging by ultrasound, given ultrasound's ability to detect small increments above the gas saturation limit, its spatial resolution and widespread clinical use.


Assuntos
Meios de Contraste/administração & dosagem , Vesícula Biliar/diagnóstico por imagem , Hidrazinas/administração & dosagem , Radical Hidroxila/administração & dosagem , Microbolhas , Estresse Oxidativo , Alcenos/metabolismo , Animais , Benzotiazóis/química , Meios de Contraste/química , Vesícula Biliar/metabolismo , Hidrazinas/química , Inflamação/induzido quimicamente , Lipopolissacarídeos , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular , Nitrogênio/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Ácidos Sulfônicos/química , Ultrassonografia
14.
PLoS One ; 7(4): e35509, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536396

RESUMO

While Magnetic Resonance Thermometry (MRT) has been extensively utilized for non-invasive temperature measurement, there is limited data on the use of high field (≥7T) scanners for this purpose. MR-guided Focused Ultrasound (MRgFUS) is a promising non-invasive method for localized hyperthermia and drug delivery. MRT based on the temperature sensitivity of the proton resonance frequency (PRF) has been implemented in both a tissue phantom and in vivo in a mouse Met-1 tumor model, using partial parallel imaging (PPI) to speed acquisition. An MRgFUS system capable of delivering a controlled 3D acoustic dose during real time MRT with proportional, integral, and derivative (PID) feedback control was developed and validated. Real-time MRT was validated in a tofu phantom with fluoroptic temperature measurements, and acoustic heating simulations were in good agreement with MR temperature maps. In an in vivo Met-1 mouse tumor, the real-time PID feedback control is capable of maintaining the desired temperature with high accuracy. We found that real time MR control of hyperthermia is feasible at high field, and k-space based PPI techniques may be implemented for increasing temporal resolution while maintaining temperature accuracy on the order of 1°C.


Assuntos
Hipertermia Induzida , Imageamento por Ressonância Magnética , Neoplasias Mamárias Experimentais/terapia , Termômetros , Terapia por Ultrassom , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Modelos Biológicos , Transplante de Neoplasias , Alimentos de Soja , Temperatura , Água
15.
PLoS One ; 6(11): e27372, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22132098

RESUMO

Therapeutic ultrasound (US) can be noninvasively focused to activate drugs, ablate tumors and deliver drugs beyond the blood brain barrier. However, well-controlled guidance of US therapy requires fusion with a navigational modality, such as magnetic resonance imaging (MRI) or X-ray computed tomography (CT). Here, we developed and validated tissue characterization using a fusion between US and CT. The performance of the CT/US fusion was quantified by the calibration error, target registration error and fiducial registration error. Met-1 tumors in the fat pads of 12 female FVB mice provided a model of developing breast cancer with which to evaluate CT-based tissue segmentation. Hounsfield units (HU) within the tumor and surrounding fat pad were quantified, validated with histology and segmented for parametric analysis (fat: -300 to 0 HU, protein-rich: 1 to 300 HU, and bone: HU>300). Our open source CT/US fusion system differentiated soft tissue, bone and fat with a spatial accuracy of ∼1 mm. Region of interest (ROI) analysis of the tumor and surrounding fat pad using a 1 mm(2) ROI resulted in mean HU of 68±44 within the tumor and -97±52 within the fat pad adjacent to the tumor (p<0.005). The tumor area measured by CT and histology was correlated (r(2) = 0.92), while the area designated as fat decreased with increasing tumor size (r(2) = 0.51). Analysis of CT and histology images of the tumor and surrounding fat pad revealed an average percentage of fat of 65.3% vs. 75.2%, 36.5% vs. 48.4%, and 31.6% vs. 38.5% for tumors <75 mm(3), 75-150 mm(3) and >150 mm(3), respectively. Further, CT mapped bone-soft tissue interfaces near the acoustic beam during real-time imaging. Combined CT/US is a feasible method for guiding interventions by tracking the acoustic focus within a pre-acquired CT image volume and characterizing tissues proximal to and surrounding the acoustic focus.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Tecido Adiposo/diagnóstico por imagem , Animais , Automação , Calibragem , Campos Eletromagnéticos , Estudos de Viabilidade , Feminino , Camundongos , Neoplasias/patologia , Especificidade de Órgãos , Ultrassonografia
16.
Artigo em Inglês | MEDLINE | ID: mdl-21156363

RESUMO

Mild hyperthermia is increasingly important for the activation of temperature-sensitive drug delivery vehicles. Noninvasive ultrasound thermometry based on a 2-D speckle tracking algorithm was examined in this study. Here, a commercial ultrasound scanner, a customized co-linear array transducer, and a controlling PC system were used to generate mild hyperthermia. Because the co-linear array transducer is capable of both therapy and imaging at widely separated frequencies, RF image frames were acquired during therapeutic insonation and then exported for off-line analysis. For in vivo studies in a mouse model, before temperature estimation, motion correction was applied between a reference RF frame and subsequent RF frames. Both in vitro and in vivo experiments were examined; in the in vitro and in vivo studies, the average temperature error had a standard deviation of 0.7°C and 0.8°C, respectively. The application of motion correction improved the accuracy of temperature estimation, where the error range was 1.9 to 4.5°C without correction compared with 1.1 to 1.0°C following correction. This study demonstrates the feasibility of combining therapy and monitoring using a commercial system. In the future, real-time temperature estimation will be incorporated into this system.


Assuntos
Hipertermia Induzida/métodos , Processamento de Sinais Assistido por Computador , Termografia/métodos , Ultrassonografia/métodos , Algoritmos , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Feminino , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Transplante de Neoplasias , Imagens de Fantasmas , Sefarose , Temperatura , Termografia/instrumentação , Transdutores , Ultrassonografia/instrumentação
17.
Contrast Media Mol Imaging ; 3(1): 9-18, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18335479

RESUMO

OBJECTIVES: Low-power multipulse contrast ultrasound imaging provides a promising tool to quantify angiogenesis noninvasively when used with contrast agents targeted to vascular markers expressed by the angiogenic endothelium. Targeted ultrasound contrast agents, with a diameter on the order of micrometers, cannot extravasate and therefore are targeted solely to receptors expressed by the vascular endothelium. The aim of this study was to evaluate the potential of a low-power multipulse imaging sequence, Cadence(TM) contrast pulse sequencing (CPS), combined with targeted contrast agents to quantify angiogenesis. MATERIAL AND METHODS: Targeted microbubbles were prepared by conjugating echistatin via biotin-avidin linkage to the surface of a phospholipid microbubble shell. The density of echistatin present on the shell was confirmed with flow-cytometry and quantified by total fluorescence. The binding of targeted microbubbles was evaluated in vitro by quantifying the adherence of targeted microbubbles to rat aortic endothelial cells, compared with control (nontargeted) microbubbles. The circulation time and adherence of targeted microbubbles was evaluated in vivo in a Matrigel model in rats and compared with control microbubbles using CPS in addition to a destructive ultrasound pulse. RESULTS: Using only the low-power CPS pulse, the echo intensity produced in the neovasculature of the Matrigel pellet was significantly greater with targeted microbubbles than with the control contrast agent (p < 0.001). Combining CPS with the destructive pulse, the processed image was significantly different in intensity (p < 0.001) and spatial extent between targeted and control agents (p < 0.001). When the morphology of the histological sample and ultrasound image correlated, the microvessel density count and the percentage of the circular area enhanced by ultrasound were correlated (p < 0.05). CONCLUSION: Low-power multipulse imaging in combination with targeted echistatin-bearing microbubbles facilitated a noninvasive, quantitative evaluation of early angiogenesis during real-time imaging. The addition of high-intensity destructive pulses facilitated estimation of the spatial extent of angiogenesis.


Assuntos
Meios de Contraste/administração & dosagem , Sistemas de Liberação de Medicamentos , Endotélio Vascular/diagnóstico por imagem , Microbolhas , Microscopia Acústica , Neovascularização Fisiológica/fisiologia , Animais , Aorta/diagnóstico por imagem , Avidina/química , Biomarcadores/metabolismo , Biotina/química , Meios de Contraste/química , Sistemas de Liberação de Medicamentos/métodos , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Microscopia Acústica/métodos , Peptídeos/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA